We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let F be the gamma distribution function with parameters a > 0 and α > 0 and let Gs be the negative binomial distribution function with parameters α and a/s, s > 0. By combining both probabilistic and approximation-theoretic methods, we obtain sharp upper and lower bounds for . In particular, we show that the exact order of uniform convergence is s–p, where p = min(1, α). Various kinds of applications concerning charged multiplicity distributions, the Yule birth process and Bernstein-type operators are also given.
We consider a two-state Markov process in which the resolution of the recording apparatus is such that small sojourns, of duration less than some constant deadtime τ, cannot be observed: the so-called time interval omission problem. We express the probability density of apparent occupancy times in terms of an exponential and infinitely many damped oscillations. Using a finite number of these gives an extremely accurate approximation to the true density for all except small values of the time t.
The authors begin by presenting a brief survey of the various useful methods of solving certain integral equations of Fredholm type. In particular, they apply the reduction techniques with a view to inverting a class of generalized hypergeometric integral transforms. This is observed to lead to an interesting generalization of the work of E. R. Love [9]. The Mellin transform technique for solving a general Fredholm type integral equation with the familiar H-function in the kernel is also considered.
This paper considers analogs of results on integral operators studied by Hörmander. Using the sharp function introduced by Fefferman and Stein, we prove weighted norm inequalities on kernel operators which map an Lp space into an Lq space, with q not equal to p. The techniques recover known results about fractional integral operators and apply to multiplier operators which satisfy a generalization of the Hörmander multiplier condition.
A non-negative function f(t), t > 0, is said to be completely monotonic if its derivatives satisfy (-1)n fn (t) ≥ 0 for all t and n = 1, 2, …, For such a function, either f(t + δ) / f(t) is strictly increasing in t for each δ > 0, or f(t) = ce-dt for some constants c and d, and for all t. An application of this result is given.
In this article, it is shown that the Volterra integral equation of convolution type w − w⊗g = f has a continuous solution w when f, g are continuous functions on Rx and ⊗ denotes a truncated convolution product. A similar result holds when f, g are entire functions of several complex variables. Also simple proofs are given to show when f, g are entire, f⊗g is entire, and, if f⊗g=0, then f = 0 or g = 0. Finally, the set of exponential polynomials and the set of all solutions to linear partial differential equations are considered in relation to this convolution product.