We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
We prove that the class of separably algebraically closed valued fields equipped with a distinguished Frobenius endomorphism $x \mapsto x^q$ is decidable, uniformly in q. The result is a simultaneous generalization of the work of Chatzidakis and Hrushovski (in the case of the trivial valuation) and the work of the first author and Hrushovski (in the case where the fields are algebraically closed).
The logical setting for the proof is a model completeness result for valued fields equipped with an endomorphism $\sigma $ which is locally infinitely contracting and fails to be onto. Namely, we prove the existence of a model complete theory $\widetilde {\mathrm {VFE}}$ amalgamating the theories $\mathrm {SCFE}$ and $\widetilde {\mathrm {VFA}}$ introduced in [5] and [11], respectively. In characteristic zero, we also prove that $\widetilde {\mathrm {VFE}}$ is NTP$_2$ and classify the stationary types: they are precisely those orthogonal to the fixed field and the value group.
Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment $\mathcal {V}$. In this context, we construct atomic formulas and define the regular fragment of our enriched logic by taking conjunctions and existential quantification of those. We then characterize $\mathcal {V}$-categories of models of regular theories as enriched injectivity classes in the $\mathcal {V}$-category of structures. These notions rely on the choice of an orthogonal factorization system $(\mathcal {E},\mathcal {M})$ on $\mathcal {V}$ which will be used, in particular, to interpret relation symbols and existential quantification.
The concept of stability has proved very useful in the field of Banach space geometry. In this note, we introduce and study a corresponding concept in the setting of Banach algebras, which we call multiplicative stability. As we shall prove, various interesting examples of Banach algebras are multiplicatively unstable, and hence unstable in the model-theoretic sense. The examples include Fourier algebras over noncompact amenable groups, $C^*$-algebras and the measure algebra of an infinite compact group.
We show that if a field A is not pseudo-finite, then there is no prime model of the theory of pseudo-finite fields over A. Assuming GCH, we extend this result to $\kappa $-prime models, for $\kappa $ an uncountable cardinal or $\aleph _\varepsilon $.
We study H-structures associated with $SU$-rank 1 measurable structures. We prove that the $SU$-rank of the expansion is continuous and that it is uniformly definable in terms of the parameters of the formulas. We also introduce notions of dimension and measure for definable sets in the expansion and prove they are uniformly definable in terms of the parameters of the formulas.
This paper studies which truth-values are most likely to be taken on finite models by arbitrary sentences of a many-valued predicate logic. The classical zero-one law (independently proved by Fagin and Glebskiĭ et al.) states that every sentence in a purely relational language is almost surely false or almost surely true, meaning that the probability that the formula is true in a randomly chosen finite structures of cardinal n is asymptotically $0$ or $1$ as n grows to infinity. We obtain generalizations of this result for any logic with values in a finite lattice-ordered algebra, and for some infinitely valued logics, including Łukasiewicz logic. The finitely valued case is reduced to the classical one through a uniform translation and Oberschelp’s generalization of the zero-one law. Moreover, it is shown that the complexity of determining the almost sure value of a given sentence is PSPACE-complete (generalizing Grandjean’s result for the classical case), and for some logics we describe completely the set of truth-values that can be taken by sentences almost surely.
Lyubetsky and Kanovei showed in [8] that there is a second-order arithmetic model of $\mathrm {Z}_2^{-p}$, (comprehension for all second-order formulas without parameters), in which $\Sigma ^1_2$-$\mathrm {CA}$ (comprehension for all $\Sigma ^1_2$-formulas with parameters) holds, but $\Sigma ^1_4$-$\mathrm {CA}$ fails. They asked whether there is a model of $\mathrm {Z}_2^{-p}+\Sigma ^1_2$-$\mathrm {CA}$ with the optimal failure of $\Sigma ^1_3$-$\mathrm {CA}$. We answer the question positively by constructing such a model in a forcing extension by a tree iteration of Jensen’s forcing. Let $\mathrm {Coll}^{-p}$ be the parameter-free collection scheme for second-order formulas and let $\mathrm {AC}^{-p}$ be the parameter-free choice scheme. We show that there is a model of $\mathrm {Z}_2^{-p}+\mathrm { AC}^{-p}+\Sigma ^1_2$-$\mathrm {CA}$ with a failure of $\Sigma ^1_4$-$\mathrm {CA}$. We also show that there is a model of $\mathrm {Z}_2^{-p}+\mathrm {Coll}^{-p}+\Sigma ^1_2$-$\mathrm {CA}$ with a failure of $\Sigma ^1_4$-$\mathrm {CA}$ and a failure of $\mathrm {AC}^{-p}$, so that, in particular, the schemes $\mathrm {Coll}^{-p}$ and $\mathrm {AC}^{-p}$ are not equivalent over $\mathrm {Z}_2^{-p}$.
We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.
We explore the interplay between $\omega $-categoricity and pseudofiniteness for groups, and we conjecture that $\omega $-categorical pseudofinite groups are finite-by-abelian-by-finite. We show that the conjecture reduces to nilpotent p-groups of class 2, and give a proof that several of the known examples of $\omega $-categorical p-groups satisfy the conjecture. In particular, we show by a direct counting argument that for any odd prime p the ($\omega $-categorical) model companion of the theory of nilpotent class 2 exponent p groups, constructed by Saracino and Wood, is not pseudofinite, and that an $\omega $-categorical group constructed by Baudisch with supersimple rank 1 theory is not pseudofinite. We also survey some scattered literature on $\omega $-categorical groups over 50 years.
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs $(G_n)$ converging to a limit $L$ and a vertex $r$ of $L$, it is possible to find a sequence of vertices $(r_n)$ such that $L$ rooted at $r$ is the limit of the graphs $G_n$ rooted at $r_n$. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices $r$ of $L$. We offer another perspective on the original problem by considering the size of definable sets to which the root $r$ belongs. We prove that if $r$ is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots $(r_n)$ always exists.
We provide a characterization of differentially large fields in arbitrary characteristic and a single derivation in the spirit of Blum axioms for differentially closed fields. In the case of characteristic zero, we use these axioms to characterize differential largeness in terms of being existentially closed in the differential algebraic Laurent series ring, and we prove that any large field of infinite transcendence degree can be expanded to a differentially large field even under certain prescribed constant fields. As an application, we show that the theory of proper dense pairs of models of a complete and model-complete theory of large fields, is a complete theory. As a further consequence of the expansion result we show that there is no real closed and differential field that has a prime model extension in closed ordered differential fields, unless it is itself a closed ordered differential field.
We study the question of $\mathcal {L}_{\mathrm {ring}}$-definability of non-trivial henselian valuation rings. Building on previous work of Jahnke and Koenigsmann, we provide a characterization of henselian fields that admit a non-trivial definable henselian valuation. In particular, we treat the cases where the canonical henselian valuation has positive residue characteristic, using techniques from the model theory and algebra of tame fields.
The seminal Krajewski–Kotlarski–Lachlan theorem (1981) states that every countable recursively saturated model of $\mathsf {PA}$ (Peano arithmetic) carries a full satisfaction class. This result implies that the compositional theory of truth over $\mathsf {PA}$ commonly known as $\mathsf {CT}^{-}[\mathsf {PA}]$ is conservative over $\mathsf {PA}$. In contrast, Pakhomov and Enayat (2019) showed that the addition of the so-called axiom of disjunctive correctness (that asserts that a finite disjunction is true iff one of its disjuncts is true) to $\mathsf {CT}^{-}[\mathsf {PA}]$ axiomatizes the theory of truth $\mathsf {CT}_{0}[\mathsf {PA}]$ that was shown by Wcisło and Łełyk (2017) to be nonconservative over $\mathsf {PA}$. The main result of this paper (Theorem 3.12) provides a foil to the Pakhomov–Enayat theorem by constructing full satisfaction classes over arbitrary countable recursively saturated models of $\mathsf {PA}$ that satisfy arbitrarily large approximations of disjunctive correctness. This shows that in the Pakhomov–Enayat theorem the assumption of disjunctive correctness cannot be replaced with any of its approximations.
The complex field, equipped with the multivalued functions of raising to each complex power, is quasiminimal, proving a conjecture of Zilber and providing evidence towards his stronger conjecture that the complex exponential field is quasiminimal.
We study the structure of infinite discrete sets D definable in expansions of ordered Abelian groups whose theories are strong and definably complete, with a particular emphasis on the set $D'$ comprised of differences between successive elements. In particular, if the burden of the structure is at most n, then the result of applying the operation $D \mapsto D'\ n$ times must be a finite set (Theorem 1.1). In the case when the structure is densely ordered and has burden $2$, we show that any definable unary discrete set must be definable in some elementary extension of the structure $\langle \mathbb{R}; <, +, \mathbb{Z} \rangle $ (Theorem 1.3).
We study possible Scott sentence complexities of linear orderings using two approaches. First, we investigate the effect of the Friedman–Stanley embedding on Scott sentence complexity and show that it only preserves $\Pi ^{\mathrm {in}}_{\alpha }$ complexities. We then take a more direct approach and exhibit linear orderings of all Scott sentence complexities except $\Sigma ^{\mathrm {in}}_{3}$ and $\Sigma ^{\mathrm {in}}_{\lambda +1}$ for $\lambda $ a limit ordinal. We show that the former cannot be the Scott sentence complexity of a linear ordering. In the process we develop new techniques which appear to be helpful to calculate the Scott sentence complexities of structures.
Several structural results about permutation groups of finite rank definable in differentially closed fields of characteristic zero (and other similar theories) are obtained. In particular, it is shown that every finite rank definably primitive permutation group is definably isomorphic to an algebraic permutation group living in the constants. Applications include the verification, in differentially closed fields, of the finite Morley rank permutation group conjectures of Borovik-Deloro and Borovik-Cherlin. Applying the results to binding groups for internality to the constants, it is deduced that if complete types p and q are of rank m and n, respectively, and are nonorthogonal, then the $(m+3)$rd Morley power of p is not weakly orthogonal to the $(n+3)$rd Morley power of q. An application to transcendence of generic solutions of pairs of algebraic differential equations is given.
Let $\mathrm {R}$ be a real closed field. Given a closed and bounded semialgebraic set $A \subset \mathrm {R}^n$ and semialgebraic continuous functions $f,g:A \rightarrow \mathrm {R}$ such that $f^{-1}(0) \subset g^{-1}(0)$, there exist an integer $N> 0$ and $c \in \mathrm {R}$ such that the inequality (Łojasiewicz inequality) $|g(x)|^N \le c \cdot |f(x)|$ holds for all $x \in A$. In this paper, we consider the case when A is defined by a quantifier-free formula with atoms of the form $P = 0, P>0, P \in \mathcal {P}$ for some finite subset of polynomials $\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$, and the graphs of $f,g$ are also defined by quantifier-free formulas with atoms of the form $Q = 0, Q>0, Q \in \mathcal {Q}$, for some finite set $\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$. We prove that the Łojasiewicz exponent in this case is bounded by $(8 d)^{2(n+7)}$. Our bound depends on d and n but is independent of the combinatorial parameters, namely the cardinalities of $\mathcal {P}$ and $\mathcal {Q}$. The previous best-known upper bound in this generality appeared in P. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991) and depended on the sum of degrees of the polynomials defining $A,f,g$ and thus implicitly on the cardinalities of $\mathcal {P}$ and $\mathcal {Q}$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)).