To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give three counterexamples to the folklore claim that in an arbitrary theory, if a complete type p over a set B does not divide over $C\subseteq B$, then no extension of p to a complete type over $\operatorname {acl}(B)$ divides over C. Two of our examples are also the first known theories where all sets are extension bases for nonforking, but forking and dividing differ for complete types (answering a question of Adler). One example is an $\mathrm {NSOP}_1$ theory with a complete type that forks, but does not divide, over a model (answering a question of d’Elbée). Moreover, dividing independence fails to imply M-independence in this example (which refutes another folklore claim). In addition to these counterexamples, we summarize various related properties of dividing that are still true. We also address consequences for previous literature, including an earlier unpublished result about forking and dividing in free amalgamation theories, and some claims about dividing in the theory of generic $K_{m,n}$-free incidence structures.
We prove an effective version of the Lopez-Escobar theorem for continuous domains. Let $Mod(\tau )$ be the set of countable structures with universe $\omega $ in vocabulary $\tau $ topologized by the Scott topology. We show that an invariant set $X\subseteq Mod(\tau )$ is $\Pi ^0_\alpha $ in the Borel hierarchy of this topology if and only if it is definable by a $\Pi ^p_\alpha $-formula, a positive $\Pi ^0_\alpha $ formula in the infinitary logic $L_{\omega _1\omega }$. As a corollary of this result we obtain a new pullback theorem for positive computable embeddings: Let $\mathcal {K}$ be positively computably embeddable in $\mathcal {K}'$ by $\Phi $, then for every $\Pi ^p_\alpha $ formula $\xi $ in the vocabulary of $\mathcal {K}'$ there is a $\Pi ^p_\alpha $ formula $\xi ^{*}$ in the vocabulary of $\mathcal {K}$ such that for all $\mathcal {A}\in \mathcal {K}$, $\mathcal {A}\models \xi ^{*}$ if and only if $\Phi (\mathcal {A})\models \xi $. We use this to obtain new results on the possibility of positive computable embeddings into the class of linear orderings.
We investigate the notion of a semi-retraction between two first-order structures (in typically different signatures) that was introduced by the second author as a link between the Ramsey property and generalized indiscernible sequences. We look at semi-retractions through a new lens establishing transfers of the Ramsey property and finite Ramsey degrees under quite general conditions that are optimal as demonstrated by counterexamples. Finally, we compare semi-retractions to the category theoretic notion of a pre-adjunction.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
We show that the conceptual distance between any two theories of first-order logic is the same as the generator distance between their Lindenbaum–Tarski algebras of concepts. As a consequence of this, we show that, for any two arbitrary mathematical structures, the generator distance between their meaning algebras (also known as cylindric set algebras) is the same as the conceptual distance between their first-order logic theories. As applications, we give a complete description for the distances between meaning algebras corresponding to structures having at most three elements and show that this small network represents all the possible conceptual distances between complete theories. As a corollary of this, we will see that there are only two non-trivial structures definable on three-element sets up to conceptual equivalence (i.e., up to elementary plus definitional equivalence).
We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(\varphi (x,y),q(y)),$ where $\varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP$_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<\omega $ for any finite tuple of variables x and any Q, if $q\supseteq p$ is a Kim-forking extension of types, then $D_Q(q)<D_Q(p)$ for some Q, and if $q\supseteq p$ is a Kim-non-forking extension, then $D_Q(q)=D_Q(p)$ for every Q that involves only invariant types whose Morley powers are -stationary. We give natural examples of families of invariant types satisfying this property in some NSOP$_1$ theories.
We also answer a question of Granger about equivalence of dividing and dividing finitely in the theory $T_\infty $ of vector spaces with a generic bilinear form. We conclude that forking equals dividing in $T_\infty $, strengthening an earlier observation that $T_\infty $ satisfies the existence axiom for forking independence.
Finally, we slightly modify our definitions and go beyond NSOP$_1$ to find out that our local ranks are bounded by the well-known ranks: the inp-rank (burden), and hence, in particular, by the dp-rank. Therefore, our local ranks are finite provided that the dp-rank is finite, for example, if T is dp-minimal. Hence, our notion of rank identifies a non-trivial class of theories containing all NSOP$_1$ and NTP$_2$ theories.
Due to Gödel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments—Warren [43] and Murzi and Topey [30]—for the idea that the natural deduction rules for the first-order universal quantifier are categorical, i.e., they uniquely determine its semantic intended meaning. Both of them make use of McGee’s open-endedness requirement and the second one uses in addition Garson’s [19] local models for defining the validity of these rules. I argue that the success of both these arguments is relative to their semantic or infinitary assumptions, which could be easily discharged if the introduction rule for the universal quantifier is taken to be an infinitary rule, i.e., non-compact. Consequently, I reconsider the use of the $\omega $-rule and I show that the addition of the $\omega $-rule to the standard formalizations of first-order logic is categorical. In addition, I argue that the open-endedness requirement does not make the first-order Peano Arithmetic categorical and I advance an argument for its categoricity based on the inferential conservativity requirement.
We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory $T_{\partial }$, the model companion of an o-minimal ${\mathcal {L}}$-theory T expanded by a generic derivation $\partial $ as in Fornasiero and Kaplan (2021, Journal of Mathematical Logic 21, 2150007).
We generalize Buium’s notion of an algebraic D-group to ${\mathcal {L}}$-definable D-groups, namely $(G,s)$, where G is an ${\mathcal {L}}$-definable group in a model of T, and $s:G\to \tau (G)$ is an ${\mathcal {L}}$-definable group section. Our main theorem says that every definable group of finite dimension in a model of $T_\partial $ is definably isomorphic to a group of the form
Let T be the theory of dense cyclically ordered sets with at least two elements. We determine the classifying space of $\mathsf {Mod}(T)$ to be homotopically equivalent to $\mathbb {CP}^\infty $. In particular, $\pi _2(\lvert \mathsf {Mod}(T)\rvert )=\mathbb {Z}$, which answers a question in our previous work. The computation is based on Connes’ cycle category $\Lambda $.
We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies $x \vee \neg x = \top $ is no larger than $\frac {2}{3}$. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.
Let $\mathscr {C}$ be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that $\mathscr {C}$ is definable in first-order logic by a sentence $\varphi $ if and only if $\mathscr {C}$ has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from $\varphi $ the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results:
– There is a class $\mathscr {C}$ of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.
– Even if we only consider classes $\mathscr {C}$ of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence $\varphi $ that defines $\mathscr {C}$ and the size of the characterization cannot be bounded by $f(|\varphi |)$ for any computable function f.
Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.
A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a $\mathbf {0}'$-computable low$_3$ compact Polish space which is not homeomorphic to a computable one, and that, for any natural number $n\geq 2$, there exists a Polish space $X_n$ such that exactly the high$_{n}$-degrees are required to present the homeomorphism type of $X_n$. Along the way we investigate the computable aspects of Čech homology groups. We also show that no compact Polish space has a least presentation with respect to Turing reducibility.
We generalise the properties $\mathsf {OP}$, $\mathsf {IP}$, k-$\mathsf {TP}$, $\mathsf {TP}_{1}$, k-$\mathsf {TP}_{2}$, $\mathsf {SOP}_{1}$, $\mathsf {SOP}_{2}$, and $\mathsf {SOP}_{3}$ to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having $\mathsf {TP}$ and dividing having local character, which we prove to be equivalent in positive logic as well. Finally, we show that a thick theory T has $\mathsf {OP}$ iff it has $\mathsf {IP}$ or $\mathsf {SOP}_{1}$ and that T has $\mathsf {TP}$ iff it has $\mathsf {SOP}_{1}$ or $\mathsf {TP}_{2}$, analogous to the well-known results in full first-order logic where $\mathsf {SOP}_{1}$ is replaced by $\mathsf {SOP}$ in the former and by $\mathsf {TP}_{1}$ in the latter. Our proofs of these final two theorems are new and make use of Kim-independence.
We study cofinal systems of finite subsets of $\omega _1$. We show that while such systems can be NIP, they cannot be defined in an NIP structure. We deduce a positive answer to a question of Chernikov and Simon from 2013: In an NIP theory, any uncountable externally definable set contains an infinite definable subset. A similar result holds for larger cardinals.
The Lovász local lemma (LLL) is a technique from combinatorics for proving existential results. There are many different versions of the LLL. One of them, the lefthanded local lemma, is particularly well suited for applications to two player games. There are also constructive and computable versions of the LLL. The chief object of this thesis is to prove an effective version of the lefthanded local lemma and to apply it to effectivise constructions of non-repetitive sequences.
The second goal of this thesis is to categorize some classes of cohesive powers. We completely describe both the isomorphism types of cohesive powers of equivalence structures and injection structures, as well as clarify the relationship between these cohesive powers and their original structures. We also describe the finite condensation of cohesive powers of computable copies of the integers as a linear order by cohesive sets whose complement are computably enumerable.
Finally, we investigate the possibility of decomposing problems in the Weihrauch degrees into a product of first order part and second order part. We give a preliminary result in this direction.
We study ordered groups in the context of both algebra and computability. Ordered groups are groups that admit a linear order that is compatible with the group operation. We explore some properties of ordered groups and discuss some related topics. We prove results about the semidirect product in relation to orderability and computability. In particular, we give a criteria for when a semidirect product of orderable groups is orderable and for when a semidirect product is computably categorical. We also give an example of a semidirect product that has the halting set coded into its multiplication structure but it is possible to construct a computable presentation of this semidirect product.
We examine a family of orderable groups that admit exactly countably many orders and show that their space of orders has arbitrary finite Cantor–Bendixson rank. Furthermore, this family of groups is also shown to be computably categorical, which in particular will allow us to conclude that any computable presentation of the groups does not admit any noncomputable orders. Lastly, we construct an example of an orderable computable group with no computable Archimedean orders but at least one computable non-Archimedean order.
Ultrafilters play a significant role in model theory to characterize logics having various compactness and interpolation properties. They also provide a general method to construct extensions of first-order logic having these properties. A main result of this paper is that every class $\Omega $ of uniform ultrafilters generates a $\Delta $-closed logic ${\mathcal {L}}_\Omega $. ${\mathcal {L}}_\Omega $ is $\omega $-relatively compact iff some $D\in \Omega $ fails to be $\omega _1$-complete iff ${\mathcal {L}}_\Omega $ does not contain the quantifier “there are uncountably many.” If $\Omega $ is a set, or if it contains a countably incomplete ultrafilter, then ${\mathcal {L}}_\Omega $ is not generated by Mostowski cardinality quantifiers. Assuming $\neg 0^\sharp $ or $\neg L^{\mu }$, if $D\in \Omega $ is a uniform ultrafilter over a regular cardinal $\nu $, then every family $\Psi $ of formulas in ${\mathcal {L}}_\Omega $ with $|\Phi |\leq \nu $ satisfies the compactness theorem. In particular, if $\Omega $ is a proper class of uniform ultrafilters over regular cardinals, ${\mathcal {L}}_\Omega $ is compact.
We construct an existentially undecidable complete discretely valued field of mixed characteristic with existentially decidable residue field and decidable algebraic part, answering a question by Anscombe–Fehm in a strong way. Along the way, we construct an existentially decidable field of positive characteristic with an existentially undecidable finite extension, modifying a construction due to Kesavan Thanagopal.
We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
We study the $\kappa $-Borel-reducibility of isomorphism relations of complete first-order theories by using coloured trees. Under some cardinality assumptions, we show the following: For all theories T and T’, if T is classifiable and T’ is unsuperstable, then the isomorphism of models of T’ is strictly above the isomorphism of models of T with respect to $\kappa $-Borel-reducibility.