To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate and compare applications of the Zilber–Pink conjecture and dynamical methods to rigidity problems for arithmetic real and complex hyperbolic lattices. Along the way, we obtain new general results about reconstructing a variation of Hodge structure from its typical Hodge locus that may be of independent interest. Applications to Siu’s immersion problem are also discussed, the most general of which only requires the hypothesis that infinitely many closed geodesics map to proper totally geodesic subvarieties under the immersion.
We explore the interplay between $\omega $-categoricity and pseudofiniteness for groups, and we conjecture that $\omega $-categorical pseudofinite groups are finite-by-abelian-by-finite. We show that the conjecture reduces to nilpotent p-groups of class 2, and give a proof that several of the known examples of $\omega $-categorical p-groups satisfy the conjecture. In particular, we show by a direct counting argument that for any odd prime p the ($\omega $-categorical) model companion of the theory of nilpotent class 2 exponent p groups, constructed by Saracino and Wood, is not pseudofinite, and that an $\omega $-categorical group constructed by Baudisch with supersimple rank 1 theory is not pseudofinite. We also survey some scattered literature on $\omega $-categorical groups over 50 years.
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs $(G_n)$ converging to a limit $L$ and a vertex $r$ of $L$, it is possible to find a sequence of vertices $(r_n)$ such that $L$ rooted at $r$ is the limit of the graphs $G_n$ rooted at $r_n$. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices $r$ of $L$. We offer another perspective on the original problem by considering the size of definable sets to which the root $r$ belongs. We prove that if $r$ is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots $(r_n)$ always exists.
We provide a characterization of differentially large fields in arbitrary characteristic and a single derivation in the spirit of Blum axioms for differentially closed fields. In the case of characteristic zero, we use these axioms to characterize differential largeness in terms of being existentially closed in the differential algebraic Laurent series ring, and we prove that any large field of infinite transcendence degree can be expanded to a differentially large field even under certain prescribed constant fields. As an application, we show that the theory of proper dense pairs of models of a complete and model-complete theory of large fields, is a complete theory. As a further consequence of the expansion result we show that there is no real closed and differential field that has a prime model extension in closed ordered differential fields, unless it is itself a closed ordered differential field.
We study the question of $\mathcal {L}_{\mathrm {ring}}$-definability of non-trivial henselian valuation rings. Building on previous work of Jahnke and Koenigsmann, we provide a characterization of henselian fields that admit a non-trivial definable henselian valuation. In particular, we treat the cases where the canonical henselian valuation has positive residue characteristic, using techniques from the model theory and algebra of tame fields.
Inquisitive modal logic, InqML, in its epistemic incarnation, extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. We use the natural notion of bisimulation equivalence in the setting of InqML, as introduced in [7], to characterise the expressiveness of InqML as the bisimulation invariant fragment of first-order logic over natural classes of two-sorted first-order structures that arise as relational encodings of inquisitive epistemic (S5-like) models. The non-elementary nature of these classes crucially requires non-classical model-theoretic methods for the analysis of first-order expressiveness, irrespective of whether we aim for characterisations in the sense of classical or of finite model theory.
The seminal Krajewski–Kotlarski–Lachlan theorem (1981) states that every countable recursively saturated model of $\mathsf {PA}$ (Peano arithmetic) carries a full satisfaction class. This result implies that the compositional theory of truth over $\mathsf {PA}$ commonly known as $\mathsf {CT}^{-}[\mathsf {PA}]$ is conservative over $\mathsf {PA}$. In contrast, Pakhomov and Enayat (2019) showed that the addition of the so-called axiom of disjunctive correctness (that asserts that a finite disjunction is true iff one of its disjuncts is true) to $\mathsf {CT}^{-}[\mathsf {PA}]$ axiomatizes the theory of truth $\mathsf {CT}_{0}[\mathsf {PA}]$ that was shown by Wcisło and Łełyk (2017) to be nonconservative over $\mathsf {PA}$. The main result of this paper (Theorem 3.12) provides a foil to the Pakhomov–Enayat theorem by constructing full satisfaction classes over arbitrary countable recursively saturated models of $\mathsf {PA}$ that satisfy arbitrarily large approximations of disjunctive correctness. This shows that in the Pakhomov–Enayat theorem the assumption of disjunctive correctness cannot be replaced with any of its approximations.
The complex field, equipped with the multivalued functions of raising to each complex power, is quasiminimal, proving a conjecture of Zilber and providing evidence towards his stronger conjecture that the complex exponential field is quasiminimal.
We study the structure of infinite discrete sets D definable in expansions of ordered Abelian groups whose theories are strong and definably complete, with a particular emphasis on the set $D'$ comprised of differences between successive elements. In particular, if the burden of the structure is at most n, then the result of applying the operation $D \mapsto D'\ n$ times must be a finite set (Theorem 1.1). In the case when the structure is densely ordered and has burden $2$, we show that any definable unary discrete set must be definable in some elementary extension of the structure $\langle \mathbb{R}; <, +, \mathbb{Z} \rangle $ (Theorem 1.3).
We study possible Scott sentence complexities of linear orderings using two approaches. First, we investigate the effect of the Friedman–Stanley embedding on Scott sentence complexity and show that it only preserves $\Pi ^{\mathrm {in}}_{\alpha }$ complexities. We then take a more direct approach and exhibit linear orderings of all Scott sentence complexities except $\Sigma ^{\mathrm {in}}_{3}$ and $\Sigma ^{\mathrm {in}}_{\lambda +1}$ for $\lambda $ a limit ordinal. We show that the former cannot be the Scott sentence complexity of a linear ordering. In the process we develop new techniques which appear to be helpful to calculate the Scott sentence complexities of structures.
Several structural results about permutation groups of finite rank definable in differentially closed fields of characteristic zero (and other similar theories) are obtained. In particular, it is shown that every finite rank definably primitive permutation group is definably isomorphic to an algebraic permutation group living in the constants. Applications include the verification, in differentially closed fields, of the finite Morley rank permutation group conjectures of Borovik-Deloro and Borovik-Cherlin. Applying the results to binding groups for internality to the constants, it is deduced that if complete types p and q are of rank m and n, respectively, and are nonorthogonal, then the $(m+3)$rd Morley power of p is not weakly orthogonal to the $(n+3)$rd Morley power of q. An application to transcendence of generic solutions of pairs of algebraic differential equations is given.
Let $\mathrm {R}$ be a real closed field. Given a closed and bounded semialgebraic set $A \subset \mathrm {R}^n$ and semialgebraic continuous functions $f,g:A \rightarrow \mathrm {R}$ such that $f^{-1}(0) \subset g^{-1}(0)$, there exist an integer $N> 0$ and $c \in \mathrm {R}$ such that the inequality (Łojasiewicz inequality) $|g(x)|^N \le c \cdot |f(x)|$ holds for all $x \in A$. In this paper, we consider the case when A is defined by a quantifier-free formula with atoms of the form $P = 0, P>0, P \in \mathcal {P}$ for some finite subset of polynomials $\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$, and the graphs of $f,g$ are also defined by quantifier-free formulas with atoms of the form $Q = 0, Q>0, Q \in \mathcal {Q}$, for some finite set $\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$. We prove that the Łojasiewicz exponent in this case is bounded by $(8 d)^{2(n+7)}$. Our bound depends on d and n but is independent of the combinatorial parameters, namely the cardinalities of $\mathcal {P}$ and $\mathcal {Q}$. The previous best-known upper bound in this generality appeared in P. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991) and depended on the sum of degrees of the polynomials defining $A,f,g$ and thus implicitly on the cardinalities of $\mathcal {P}$ and $\mathcal {Q}$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)).
We start by showing how to approximate unitary and bounded self-adjoint operators by operators in finite dimensional spaces. Using ultraproducts we give a precise meaning for the approximation. In this process we see how the spectral measure is obtained as an ultralimit of counting measures that arise naturally from the finite dimensional approximations. Then we see how generalized distributions can be interpreted in the ultraproduct. Finally we study how one can calculate kernels of operators K by calculating them in the finite dimensional approximations and how one needs to interpret Dirac deltas in the ultraproduct in order to get the kernels as propagators $\langle x_{1}|K|x_{0}\rangle $.
Traditionally, the role of general topology in model theory has been mainly limited to the study of compacta that arise in first-order logic. In this context, the topology tends to be so trivial that it turns into combinatorics, motivating a widespread approach that focuses on the combinatorial component while usually hiding the topological one. This popular combinatorial approach to model theory has proved to be so useful that it has become rare to see more advanced topology in model-theoretic articles. Prof. Franklin D. Tall has led the re-introduction of general topology as a valuable tool to push the boundaries of model theory. Most of this thesis is directly influenced by and builds on this idea.
The first part of the thesis will answer a problem of T. Gowers on the undefinability of pathological Banach spaces such as Tsirelson space. The topological content of this chapter is centred around Grothendieck spaces.
In a similar spirit, the second part will show a new connection between the notion of metastability introduced by T. Tao and the topological concept of pseudocompactness. We shall make use of this connection to show a result of X. Caicedo, E. Dueñez, J. Iovino in a much simplified manner.
The third part of the thesis will carry a higher set-theoretic content as we shall use forcing and descriptive set theory to show that the well-known theorem of M. Morley on the trichotomy concerning the number of models of a first-order countable theory is undecidable if one considers second-order countable theories instead.
The only part that did not originate from model-theoretic questions will be the fourth one. We show that $\operatorname {ZF} + \operatorname {DC} +$“all Turing invariant sets of reals have the perfect set property” implies that all sets of reals have the perfect set property. We also show that this result generalizes to all countable analytic equivalence relations. This result provides evidence in favour of a long-standing conjecture asking whether Turing determinacy implies the axiom of determinacy.
We enrich the class of power-constructible functions, introduced in [CCRS23], to a class $\mathcal {C}^{\mathcal {M,F}}$ of algebras of functions which contains all complex powers of subanalytic functions and their parametric Mellin and Fourier transforms, and which is stable under parametric integration. By describing a set of generators of a special prepared form, we deduce information on the asymptotics and on the loci of integrability of the functions of $\mathcal {C}^{\mathcal {M,F}}$. We furthermore identify a subclass $\mathcal {C}^{\mathbb {C},\mathcal {F}}$ of $\mathcal {C}^{\mathcal {M,F}}$, which is the smallest class containing all power-constructible functions and stable under parametric Fourier transforms and right-composition with subanalytic maps. This class is also stable under parametric integration, under taking pointwise and $\text {L}^p$-limits and under parametric Fourier-Plancherel transforms. Finally, we give a full asymptotic expansion in the power-logarithmic scale, uniformly in the parameters, for functions in $\mathcal {C}^{\mathbb {C},\mathcal {F}}$.
Inspired by Adler’s idea on VC minimal theories [1], we introduce VC-minimal complexity. We show that for any $N\in \mathbb {N}^{>0}$, there is $k_N>0$ such that for any finite bipartite graph $(X,Y;E)$ with VC-minimal complexity $< N$, there exist $X'\subseteq X$, $Y'\subseteq Y$ with $|X'|\geq k_N |X|$, $|Y'|\geq k_N |Y|$ such that $X'\times Y' \subseteq E$ or $X'\times Y'\cap E=\emptyset $.
Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$, has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T^{\delta }$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
We generalize Hrushovski’s group configuration theorem to the case where the type of the configuration is generically stable, without assuming tameness of the ambient theory. The properties of generically stable types, which we recall in the second section, enable us to adapt the proof known in the stable context.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.