We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the notion of non-trivial elementary embeddings under the assumption that V satisfies ZFC without Power Set but with the Collection Scheme. We show that no such embedding can exist under the additional assumption that it is cofinal and either is a set or that the scheme of Dependent Choices of arbitrary length holds. We then study failures of instances of Collection in symmetric submodels of class forcings.
We provide a model theoretical and tree property-like characterization of
$\lambda $
-
$\Pi ^1_1$
-subcompactness and supercompactness. We explore the behavior of these combinatorial principles at accessible cardinals.
We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level
$\omega _1$
(that is, the ones that are closed under Borel preimages) and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep (namely, that every non-selfdual Wadge class can be expressed as the result of a Hausdorff operation applied to the open sets). The exposition is self-contained, except for facts from classical descriptive set theory.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure
$(N,0,s)$
consisting of a set N, a distinguished element
$0\in N$
and a function
$s\colon N\to N$
. The structure in our axiomatization is a triple
$(O,L,s)$
, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function
$s\colon O\to O$
. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
Let
$\kappa $
be a regular uncountable cardinal, and a cardinal greater than or equal to
$\kappa $
. Revisiting a celebrated result of Shelah, we show that if is close to
$\kappa $
and (= the least size of a cofinal subset of ) is greater than , then can be represented (in the sense of pcf theory) as a pseudopower. This can be used to obtain optimal results concerning the splitting problem. For example we show that if and , then no
$\kappa $
-complete ideal on is weakly -saturated.
Descriptive set theory and computability theory are closely-related fields of logic; both are oriented around a notion of descriptive complexity. However, the two fields typically consider objects of very different sizes; computability theory is principally concerned with subsets of the naturals, while descriptive set theory is interested primarily in subsets of the reals. In this paper, we apply a generalization of computability theory, admissible recursion theory, to consider the relative complexity of notions that are of interest in descriptive set theory. In particular, we examine the perfect set property, determinacy, the Baire property, and Lebesgue measurability. We demonstrate that there is a separation of descriptive complexity between the perfect set property and determinacy for analytic sets of reals; we also show that the Baire property and Lebesgue measurability are both equivalent in complexity to the property of simply being a Borel set, for
$\boldsymbol {\Sigma ^{1}_{2}}$
sets of reals.
Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work in Zermelo–Fraenkel set theory with dependent choice and the axiom of determinacy $\mathsf {AD}$. On the other hand, using the full axiom of choice, one can construct problems which are discontinuous, but not effectively so. Hence, the exact situation at the bottom of the Weihrauch lattice sensitively depends on the axiomatic setting that we choose. We prove our result using a variant of Wadge games for mathematical problems. While the existence of a winning strategy for Player II characterizes continuity of the problem (as already shown by Nobrega and Pauly), the existence of a winning strategy for Player I characterizes effective discontinuity of the problem. By Weihrauch determinacy we understand the condition that every problem is either continuous or effectively discontinuous. This notion of determinacy is a fairly strong notion, as it is not only implied by the axiom of determinacy $\mathsf {AD}$, but it also implies Wadge determinacy. We close with a brief discussion of generalized notions of productivity.
In this paper, we use algebra-valued models to study cardinal numbers in a class of non-classical set theories. The algebra-valued models of these non-classical set theories validate the Axiom of Choice, if the ground model validates it. Though the models are non-classical, the foundations of cardinal numbers in these models are similar to those in classical set theory. For example, we show that mathematical induction, Cantor’s theorem, and the Schröder–Bernstein theorem hold in these models. We also study a few basic properties of cardinal arithmetic. In addition, the generalized continuum hypothesis is proved to be independent of these non-classical set theories.
We describe an organizing framework for the study of infinitary combinatorics. This framework is Čech cohomology. It describes ZFC principles distinguishing among the ordinals of the form
$\omega _n$
. More precisely, this framework correlates each
$\omega _n$
with an
$(n+1)$
-dimensional generalization of Todorcevic’s walks technique, and begins to account for that technique’s “unreasonable effectiveness” on
$\omega _1$
.
We show in contrast that on higher cardinals
$\kappa $
, the existence of these principles is frequently independent of the ZFC axioms. Finally, we detail implications of these phenomena for the computation of strong homology groups and higher derived limits, deriving independence results in algebraic topology and homological algebra, respectively, in the process.
We show that there exist uncountably many (tall and nontall) pairwise nonisomorphic density-like ideals on
$\omega $
which are not generalized density ideals. In addition, they are nonpathological. This answers a question posed by Borodulin-Nadzieja et al. in [this Journal, vol. 80 (2015), pp. 1268–1289]. Lastly, we provide sufficient conditions for a density-like ideal to be necessarily a generalized density ideal.
We prove two theorems concerning indestructibility properties of the first two strongly compact cardinals when these cardinals are in addition the first two measurable cardinals. Starting from two supercompact cardinals
$\kappa _1 < \kappa _2$
, we force and construct a model in which
$\kappa _1$
and
$\kappa _2$
are both the first two strongly compact and first two measurable cardinals,
$\kappa _1$
’s strong compactness is fully indestructible (i.e.,
$\kappa _1$
’s strong compactness is indestructible under arbitrary
$\kappa _1$
-directed closed forcing), and
$\kappa _2$
’s strong compactness is indestructible under
$\mathrm {Add}(\kappa _2, \delta )$
for any ordinal
$\delta $
. This provides an answer to a strengthened version of a question of Sargsyan found in [17, Question 5]. We also investigate indestructibility properties that may occur when the first two strongly compact cardinals are not only the first two measurable cardinals, but also exhibit nontrivial degrees of supercompactness.
The cardinal invariant
$\mathfrak {hm}$
is defined as the minimum size of a family of
$\mathsf {c}_{\mathsf {min}}$
-monochromatic sets that cover
$2^{\omega }$
(where
$\mathsf {c}_{\mathsf {min}}( x,y) $
is the parity of the biggest initial segment both x and y have in common). We prove that
$\mathfrak {hm}=\omega _{1}$
holds in Shelah’s model of
$\mathfrak {i<u},$
so the inequality
$\mathfrak {hm<u}$
is consistent with the axioms of
$\mathsf {ZFC}$
. This answers a question of Thilo Weinert. We prove that the diamond principle
$\mathfrak {\Diamond }_{\mathfrak {d}}$
also holds in that model.
We show that it is independent whether club
$\kappa $
-Miller forcing preserves
$\kappa ^{++}$
. We show that under
$\kappa ^{<\kappa }> \kappa $
, club
$\kappa $
-Miller forcing collapses
$\kappa ^{<\kappa }$
to
$\kappa $
. Answering a question by Brendle, Brooke-Taylor, Friedman and Montoya, we show that the iteration of ultrafilter
$\kappa $
-Miller forcing does not have the Laver property.
Ramsey algebras are an attempt to investigate Ramsey spaces generated by algebras in a purely combinatorial fashion. Previous studies have focused on the basic properties of Ramsey algebras and a few specific examples. In this article, we study the properties of Ramsey algebras from a structural point of view. For instance, we will see that isomorphic algebras have the same Ramsey algebraic properties, but elementarily equivalent algebras need not be so, as expected. We also answer an open question about Cartesian products of Ramsey algebras.
In set theory without the Axiom of Choice (
$\mathsf {AC}$
), we investigate the open problem of the deductive strength of statements which concern the existence of almost disjoint and maximal almost disjoint (MAD) families of infinite-dimensional subspaces of a given infinite-dimensional vector space, as well as the extension of almost disjoint families in infinite-dimensional vector spaces to MAD families.
We study the following natural strong variant of destroying Borel ideals:
$\mathbb {P}$
$+$
-destroys
$\mathcal {I}$
if
$\mathbb {P}$
adds an
$\mathcal {I}$
-positive set which has finite intersection with every
$A\in \mathcal {I}\cap V$
. Also, we discuss the associated variants
of the star-uniformity and the star-covering numbers of these ideals.
Among other results, (1) we give a simple combinatorial characterisation when a real forcing
$\mathbb {P}_I$
can
$+$
-destroy a Borel ideal
$\mathcal {J}$
; (2) we discuss many classical examples of Borel ideals, their
$+$
-destructibility, and cardinal invariants; (3) we show that the Mathias–Prikry,
$\mathbb {M}(\mathcal {I}^*)$
-generic real
$+$
-destroys
$\mathcal {I}$
iff
$\mathbb {M}(\mathcal {I}^*)\ +$
-destroys
$\mathcal {I}$
iff
$\mathcal {I}$
can be
$+$
-destroyed iff
$\mathrm {cov}^*(\mathcal {I},+)>\omega $
; (4) we characterise when the Laver–Prikry,
$\mathbb {L}(\mathcal {I}^*)$
-generic real
$+$
-destroys
$\mathcal {I}$
, and in the case of P-ideals, when exactly
$\mathbb {L}(\mathcal {I}^*)$
$+$
-destroys
$\mathcal {I}$
; and (5) we briefly discuss an even stronger form of destroying ideals closely related to the additivity of the null ideal.
We study the bi-embeddability and elementary bi-embeddability relation on graphs under Borel reducibility and investigate the degree spectra realized by these relations. We first give a Borel reduction from embeddability on graphs to elementary embeddability on graphs. As a consequence we obtain that elementary bi-embeddability on graphs is a
$\boldsymbol {\Sigma }^1_1$
complete equivalence relation. We then investigate the algorithmic properties of this reduction. We obtain that elementary bi-embeddability on the class of computable graphs is
$\Sigma ^1_1$
complete with respect to computable reducibility and show that the elementary bi-embeddability and bi-embeddability spectra realized by graphs are related.
A Cantor series expansion for a real number x with respect to a basic sequence
$Q=(q_1,q_2,\dots )$
, where
$q_i \geq 2$
, is a generalization of the base b expansion to an infinite sequence of bases. Ki and Linton in 1994 showed that for ordinary base b expansions the set of normal numbers is a
$\boldsymbol {\Pi }^0_3$
-complete set, establishing the exact complexity of this set. In the case of Cantor series there are three natural notions of normality: normality, ratio normality, and distribution normality. These notions are equivalent for base b expansions, but not for more general Cantor series expansions. We show that for any basic sequence the set of distribution normal numbers is
$\boldsymbol {\Pi }^0_3$
-complete, and if Q is
$1$
-divergent then the sets of normal and ratio normal numbers are
$\boldsymbol {\Pi }^0_3$
-complete. We further show that all five non-trivial differences of these sets are
$D_2(\boldsymbol {\Pi }^0_3)$
-complete if
$\lim _i q_i=\infty $
and Q is
$1$
-divergent. This shows that except for the trivial containment that every normal number is ratio normal, these three notions are as independent as possible.
We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if
$Th(M)$
is not small, then
$M^{eq}$
has a Borel complete reduct, and if a theory T is not
$\omega $
-stable, then the elementary diagram of some countable model of T has a Borel complete reduct.
By the Galvin–Mycielski–Solovay theorem, a subset X of the line has Borel’s strong measure zero if and only if
$M+X\neq \mathbb {R}$
for each meager set M.
A set
$X\subseteq \mathbb {R}$
is meager-additive if
$M+X$
is meager for each meager set M. Recently a theorem on meager-additive sets that perfectly parallels the Galvin–Mycielski–Solovay theorem was proven: A set
$X\subseteq \mathbb {R}$
is meager-additive if and only if it has sharp measure zero, a notion akin to strong measure zero.
We investigate the validity of this result in Polish groups. We prove, e.g., that a set in a locally compact Polish group admitting an invariant metric is meager-additive if and only if it has sharp measure zero. We derive some consequences and calculate some cardinal invariants.