We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the notion of integrable modules over $\imath $quantum groups (a.k.a. quantum symmetric pair coideal subalgebras). After determining a presentation of such modules, we prove that each integrable module over a quantum group is integrable when restricted to an $\imath $quantum group. As an application, we show that the space of matrix coefficients of all simple integrable modules over an $\imath $quantum group of finite type with specific parameters coincides with Bao-Song’s coordinate ring of the $\imath $quantum group.
We give a crystal structure on the set of Gelfand–Tsetlin patterns (GTPs), which parametrize bases for finite-dimensional irreducible representations of the general linear Lie algebra. The crystal data are given in closed form and are expressed using tropical polynomial functions of the entries of the patterns. We prove that with this crystal structure, the natural bijection between GTPs and semistandard Young tableaux is a crystal isomorphism.
We study simple Lie algebras generated by extremal elements, over arbitrary fields of arbitrary characteristic. We show the following: (1) If the extremal geometry contains lines, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a cubic norm structure; (2) If there exists a field extension of degree at most $2$ such that the extremal geometry over that field extension contains lines, and in addition, there exist symplectic pairs of extremal elements, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a quadrangular algebra.
One of our key tools is a new definition of exponential maps that makes sense even over fields of characteristic $2$ and $3$, which ought to be interesting in its own right.
Not only was Jacques Tits a constant source of inspirationthrough his work, he also had a direct personal influence,notably through his threat to speak evil of our work if it did notinclude the characteristic 2 case.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
We describe algebraically, diagrammatically, and in terms of weight vectors, the restriction of tensor powers of the standard representation of quantum $\mathfrak {sl}_2$ to a coideal subalgebra. We realize the category as a module category over the monoidal category of type $\pm 1$ representations in terms of string diagrams and via generators and relations. The idempotents projecting onto the quantized eigenspaces are described as type $B/D$ analogues of Jones–Wenzl projectors. As an application, we introduce and give recursive formulas for analogues of $\Theta$-networks.
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of relative invariants.
For a Lie algebra ${\mathfrak g}$ of holomorphic vector fields on a complex manifold M, any holomorphic ${\mathfrak g}$-invariant hypersurface is given in terms of a ${\mathfrak g}$-invariant divisor. This generalizes the classical notion of scalar relative ${\mathfrak g}$-invariant. Any ${\mathfrak g}$-invariant divisor gives rise to a ${\mathfrak g}$-equivariant line bundle, and a large part of this paper is therefore devoted to the investigation of the group $\mathrm {Pic}_{\mathfrak g}(M)$ of ${\mathfrak g}$-equivariant line bundles. We give a cohomological description of $\mathrm {Pic}_{\mathfrak g}(M)$ in terms of a double complex interpolating the Chevalley-Eilenberg complex for ${\mathfrak g}$ with the Čech complex of the sheaf of holomorphic functions on M.
We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a characterization of them with our general theory. Examples, including projective geometry of curves and second-order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some classical computations. At the end, we briefly discuss generalizations of this theory.
We prove a strong quantitative version of the Kurosh Problem, which has been conjectured by Zelmanov, up to a mild polynomial error factor, thereby extending all previously known growth rates of algebraic algebras. Consequently, we provide the first counterexamples to the Kurosh Problem over any field with known subexponential growth, and the first examples of finitely generated, infinite-dimensional, nil Lie algebras with known subexponential growth over fields of characteristic zero.
We also widen the known spectrum of the Gel’fand–Kirillov dimensions of algebraic algebras, improving the answer of Alahmadi–Alsulami–Jain–Zelmanov to a question of Bell, Smoktunowicz, Small and Young. Finally, we prove improved analogous results for graded-nil algebras.
In this paper, we show that for a large natural class of vertex operator algebras (VOAs) and their modules, the Zhu’s algebras and bimodules (and their g-twisted analogs) are Noetherian. These carry important information about the representation theory of the VOA, and its fusion rules, and the Noetherian property gives the potential for (non-commutative) algebro-geometric methods to be employed in their study.
We give a complete combinatorial classification of the parabolic Verma modules in the principal block of the parabolic category $\mathcal{O}$ associated with a minimal or a maximal parabolic subalgebra of the special linear Lie algebra for which the answer to Kostant’s problem is positive.
Let $\mathfrak{g}$ be the queer superalgebra $\operatorname {\mathfrak{q}}(n)$ over the field of complex numbers $\mathbb C$. For any associative, commutative, and finitely generated $\mathbb C$-algebra A with unity, we consider the loop Lie superalgebra $\mathfrak{g} \otimes A$. We define a class of central operators for $\mathfrak{g} \otimes A$, which generalizes the classical Gelfand invariants. We show that they generate the algebra $U(\mathfrak{g} \otimes A)^{\mathfrak{g}}$. We also show that there are no non-trivial $\mathfrak{g}$-invariants of $U(\mathfrak{g} \otimes A)$ where $\mathfrak{g}=\mathfrak{p}(n)$, the periplectic Lie superalgebra.
Let be a commutative ring containing a primitive $l'$th root $\varepsilon $ of $1$. The infinitesimal q-Schur algebras over form an ascending chain of subalgebras of the q-Schur algebra , which are useful in studying representations of the Frobenius kernel of the associated quantum linear group. Let be the quantized enveloping algebra of $\mathfrak {gl}_n$ over . There is a natural surjective algebra homomorphism $\zeta _{d}$ from to . The map $\zeta _{d}$ restricts to a surjective algebra homomorphism $\zeta _{d,r}$ from to , where is a certain Hopf subalgebra of , which is closely related to Frobenius–Lusztig kernels of . We give the extra defining relations needed to define the infinitesimal q-Schur algebra as a quotient of . The map $\zeta _{d,r}$ induces a surjective algebra homomorphism , where is the modified quantum algebra associated with . We also give a generating set for the kernel of $\dot {\zeta }_{d,r}$. These results can be used to give a classification of irreducible -modules over a field of characteristic p.
In this paper, we first introduce the concept of symmetric biderivation radicals and characteristic subalgebras of Lie algebras and study their properties. Based on these results, we precisely determine biderivations of some Lie algebras including finite-dimensional simple Lie algebras over arbitrary fields of characteristic not $2$ or $3$, and the Witt algebras $\mathcal {W}^+_n$ over fields of characteristic $0$. As an application, commutative post-Lie algebra structure on the aforementioned Lie algebras is shown to be trivial.
This paper presents a classification of all simple Harish-Chandra modules for the $N=1$ Heisenberg–Virasoro superalgebra, which turn out to be highest weight modules, lowest weight modules, and evaluation modules of the intermediate series (all weight spaces are one dimensional). Moreover, a characterization of the tensor product of highest weight modules with intermediate series modules is obtained.
In this paper, we develop two new homological invariants called relative dominant dimension with respect to a module and relative codominant dimension with respect to a module. Among the applications are precise connections between Ringel duality, split quasi-hereditary covers and double centralizer properties, constructions of split quasi-hereditary covers of quotients of Iwahori-Hecke algebras using Ringel duality of q-Schur algebras and a new proof for Ringel self-duality of the blocks of the Bernstein-Gelfand-Gelfand category $\mathcal {O}$. These homological invariants are studied over Noetherian algebras which are finitely generated and projective as a module over the ground ring. They are shown to behave nicely under change of rings techniques.
We introduce a diagrammatic monoidal category, the spin Brauer category, that plays the same role for the spin and pin groups as the Brauer category does for the orthogonal groups. In particular, there is a full functor from the spin Brauer category to the category of finite-dimensional modules for the spin and pin groups. This functor becomes essentially surjective after passing to the Karoubi envelope, and its kernel is the tensor ideal of negligible morphisms. In this way, the spin Brauer category can be thought of as an interpolating category for the spin and pin groups. We also define an affine version of the spin Brauer category, which acts on categories of modules for the pin and spin groups via translation functors.
We introduce non-associative skew Laurent polynomial rings and characterize when they are simple. Thereby, we generalize results by Jordan, Voskoglou, and Nystedt and Öinert.
We compute the Jantzen filtration of a $\mathcal {D}$-module on the flag variety of $\operatorname {\mathrm {SL}}_2(\mathbb {C})$. At each step in the computation, we illustrate the $\mathfrak {sl}_2(\mathbb {C})$-module structure on global sections to give an algebraic picture of this geometric computation. We conclude by showing that the Jantzen filtration on the $\mathcal {D}$-module agrees with the algebraic Jantzen filtration on its global sections, demonstrating a famous theorem of Beilinson and Bernstein.
We develop techniques to construct isomorphisms between simple affine W-algebras and affine vertex algebras at admissible levels. We then apply these techniques to obtain many new, and conjecturally all, admissible collapsing levels for affine W-algebras. In short, if a simple affine W-algebra at a given level is equal to its affine vertex subalgebra generated by the centraliser of an ${\mathfrak {sl}}_2$-triple associated with the underlying nilpotent orbit, then that level is said to be collapsing. Collapsing levels are important both in representation theory and in theoretical physics. Our approach relies on two fundamental invariants of vertex algebras. The first one is the associated variety, which, in the context of admissible level simple affine W-algebras, leads to the Poisson varieties known as nilpotent Slodowy slices. We exploit the singularities of these varieties to detect possible collapsing levels. The second invariant is the asymptotic datum. We prove a general result asserting that, under appropriate hypotheses, equality of asymptotic data implies isomorphism at the level of vertex algebras. Then we use this to give a sufficient criterion, of combinatorial nature, for an admissible level to be collapsing. Our methods also allow us to study isomorphisms between quotients of W-algebras and extensions of simple affine vertex algebras at admissible levels. Based on such examples, we are led to formulate a general conjecture: for any finite extension of vertex algebras, the induced morphism between associated Poisson varieties is dominant.
We give a generators-and-relations description of the reduced versions of quiver quantum toroidal algebras, which act on the spaces of BPS states associated to (noncompact) toric Calabi–Yau threefolds X. As an application, we obtain a description of the K-theoretic Hall algebra of (the quiver with potential associated to) X, modulo torsion.
We obtain a new interpretation of the cohomological Hall algebra $\mathcal {H}_Q$ of a symmetric quiver Q in the context of the theory of vertex algebras. Namely, we show that the graded dual of $\mathcal {H}_Q$ is naturally identified with the underlying vector space of the principal free vertex algebra associated to the Euler form of Q. Properties of that vertex algebra are shown to account for the key results about $\mathcal {H}_Q$. In particular, it has a natural structure of a vertex bialgebra, leading to a new interpretation of the product of $\mathcal {H}_Q$. Moreover, it is isomorphic to the universal enveloping vertex algebra of a certain vertex Lie algebra, which leads to a new interpretation of Donaldson–Thomas invariants of Q (and, in particular, re-proves their positivity). Finally, it is possible to use that vertex algebra to give a new interpretation of CoHA modules made of cohomologies of non-commutative Hilbert schemes.