To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For and α, we consider sets of numbers x such that for infinitely many n, x is 2−αn-close to some ∑ ni=1ωiλi, where ωi∈{0,1}. These sets are in Falconer’s intersection classes for Hausdorff dimension s for some s such that −(1/α)(log λ /log 2 )≤s≤1/α. We show that for almost all , the upper bound of s is optimal, but for a countable infinity of values of λ the lower bound is the best possible result.
We relate a previous result of ours on families of Diophantine equations having only trivial solutions with a result on the approximation of an algebraic number by products of rational numbers and units. We compare this approximation with a Liouville type estimate, and with an estimate arising from a lower bound for a linear combination of logarithms.
We give continued fraction algorithms for each conjugacy class of triangle Fuchsian group of signature $(3, n, \infty )$, with $n\geq 4$. In particular, we give an explicit form of the group that is a subgroup of the Hilbert modular group of its trace field and provide an interval map that is piecewise linear fractional, given in terms of group elements. Using natural extensions, we find an ergodic invariant measure for the interval map. We also study Diophantine properties of approximation in terms of the continued fractions and show that these continued fractions are appropriate to obtain transcendence results.
The aim of this work is to adapt a construction of the so-called $U_{m}$-numbers ($m\gt 1$), which are extended Liouville numbers with respect to algebraic numbers of degree $m$ but not with respect to algebraic numbers of degree less than $m$, to the $p$-adic frame.
The Littlewood conjecture states that for all (α,β)∈ℝ2. We show that with the additional factor of log q⋅log log q, the statement is false. Indeed, our main result implies that the set of (α,β) for which is of full dimension.
Denote the nth convergent of the continued fraction α=[a0;a1,a2,…] by pn/qn=[a0;a1,…,an]. In this paper we give exact formulae for the quantities Dn:=qnα−pn in several typical types of Tasoev continued fractions. A simple example of the type of Tasoev continued fraction considered is α=[0;ua,ua2,ua3,…].
Let 𝕂⊂ℂ be a number field. We show how to compute 𝕂-irrationality measures of a number ξ∉𝕂, and 𝕂-nonquadraticity measures of ξ if [𝕂(ξ):𝕂]>2. By applying the saddle point method to a family of double complex integrals, we prove ℚ(α)-irrationality measures and ℚ(α)-nonquadraticity measures of log α for several algebraic numbers α∈ℂ, improving earlier results due to Amoroso and the second-named author.
We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w*2.
We study various Dirichlet series of the form ∑n≥1f(πnα)/ns, where α is an irrational number and f(x) is a trigonometric function like cot(x), 1/sin(x) or 1/sin2(x). The convergence is slow and strongly depends on the Diophantine properties of α. We provide necessary and sufficient convergence conditions using the continued fraction of α. We also show that any one of our series is equal to a related series, which converges much faster, defined in term of iterations of the continued fraction operator α↦{1/α}.
In this paper we present new explicit simultaneous rational approximations which converge subexponentially to the values of the Bell polynomials at the points where m=1,2,…,a, a∈ℕ, γ is Euler’s constant and ζ is the Riemann zeta function.
We discuss the following general question and some of its extensions. Let (εk)k≥1 be a sequence with values in {0,1}, which is not ultimately periodic. Define ξ:=∑ k≥1εk/2k and ξ′:=∑ k≥1εk/3k. Let 𝒫 be a property valid for almost all real numbers. Is it true that at least one among ξ and ξ′ satisfies 𝒫?
Let p be a prime number. For a positive integer n and a p-adic number ξ, let λn(ξ) denote the supremum of the real numbers λ such that there are arbitrarily large positive integers q such that ‖qξ‖p,‖qξ2‖p,…,‖qξn‖p are all less than q−λ−1. Here, ‖x‖p denotes the infimum of |x−n|p as n runs through the integers. We study the set of values taken by the function λn.
This paper deals with a sufficient condition for the infinite product of rational numbers to be an irrational number. The condition requires only some conditions for convergence and does not use other properties like divisibility. The proof is based on an idea of Erdős.
In this paper we investigate the analogue of the classical badly approximable setup in which the distance to the nearest integer ‖⋅‖ is replaced by the sup norm |⋅|. In the case of one linear form we prove that the hybrid badly approximable set is of full Hausdorff dimension.
In this paper, we study how close the terms of a finite arithmetic progression can get to a perfect square. The answer depends on the initial term, the common difference and the number of terms in the arithmetic progression.
It is shown that any subset of can be the exceptional set of some transcendental entire function. Furthermore, we give a much more general version of this theorem and present a unified proof.
We investigate the distribution of real algebraic numbers of a fixed degree that have a close conjugate number, with the distance between the conjugate numbers being given as a function of their height. The main result establishes the ubiquity of such algebraic numbers in the real line and implies a sharp quantitative bound on their number. Although the main result is rather general, it implies new estimates on the least possible distance between conjugate algebraic numbers, which improve recent bounds obtained by Bugeaud and Mignotte. So far, the results à la Bugeaud and Mignotte have relied on finding explicit families of polynomials with clusters of roots. Here we suggest a different approach in which irreducible polynomials are implicitly tailored so that their derivatives assume certain values. We consider some applications of our main theorem, including generalisations of a theorem of Baker and Schmidt and a theorem of Bernik, Kleinbock and Margulis in the metric theory of Diophantine approximation.
Let A be an n×m matrix with real entries. Consider the set BadA of x∈[0,1)n for which there exists a constant c(x)>0 such that for any q∈ℤm the distance between x and the point {Aq} is at least c(x)|q|−m/n. It is shown that the intersection of BadA with any suitably regular fractal set is of maximal Hausdorff dimension. The linear form systems investigated in this paper are natural extensions of irrational rotations of the circle. Even in the latter one-dimensional case, the results obtained are new.
The Hausdorff dimension and measure of the set of simultaneously ψ-approximable points lying on integer polynomial curves is obtained for sufficiently small error functions.
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties. The key ingredient is a theorem about the existence of best approximations of arbitrary elements of finitely generated free modules over Novikov rings by elements of prescribed submodules with respect to a certain family of non-Archimedean metrics.