To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study the Duffin–Schaeffer conjecture, which claims that $\unicode[STIX]{x1D706}(\bigcap _{m=1}^{\infty }\bigcup _{n=m}^{\infty }{\mathcal{E}}_{n})=1$ if and only if $\sum _{n=1}^{\infty }\unicode[STIX]{x1D706}({\mathcal{E}}_{n})=\infty$, where $\unicode[STIX]{x1D706}$ denotes the Lebesgue measure on $\mathbb{R}/\mathbb{Z}$,
and $\unicode[STIX]{x1D713}$ denotes any non-negative arithmetical function. Instead of studying the superior limit $\bigcap _{m=1}^{\infty }\bigcup _{n=m}^{\infty }{\mathcal{E}}_{n}$ we focus on the union $\bigcup _{n=1}^{\infty }{\mathcal{E}}_{n}$ and conjecture that there exists a universal constant $C>0$ such that
It is shown that this conjecture is equivalent to the Duffin–Schaeffer conjecture. Similar phenomena exist in the fields of $p$-adic numbers and formal Laurent series. Furthermore, two conjectures of Haynes, Pollington and Velani are shown to be equivalent to the Duffin–Schaeffer conjecture, and a weighted version of the second Borel–Cantelli lemma is introduced to study the Duffin–Schaeffer conjecture.
Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\mapsto \unicode[STIX]{x1D6FD}x\,\text{mod}\,1$. Further, define
$$\begin{eqnarray}W_{y}(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}):=\{x\in [0,1]:|T_{\unicode[STIX]{x1D6FD}}^{n}x-y|<\unicode[STIX]{x1D6F9}(n)\text{ for infinitely many }n\}\end{eqnarray}$$
and
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}):=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-y|<\unicode[STIX]{x1D6F9}(n)\text{ for infinitely many }n\},\end{eqnarray}$$
where $\unicode[STIX]{x1D6F9}:\mathbb{N}\rightarrow \mathbb{R}_{{>}0}$ is a positive function such that $\unicode[STIX]{x1D6F9}(n)\rightarrow 0$ as $n\rightarrow \infty$. In this paper, we show that each of the above sets obeys a Jarník-type dichotomy, that is, the generalized Hausdorff measure is either zero or full depending upon the convergence or divergence of a certain series. This work completes the metrical theory of these sets.
We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)15 for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0, 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.
Maillet proved that the set of Liouville numbers is preserved under rational functions with rational coefficients. Based on this result, a problem posed by Mahler is to investigate whether there exist entire transcendental functions with this property or not. For large parametrized classes of Liouville numbers, we construct such functions and moreover we show that they can be constructed such that all their derivatives share this property. We use a completely different approach than in a recent paper, where functions with a different invariant subclass of Liouville numbers were constructed (though with no information on derivatives). More generally, we study the image of Liouville numbers under analytic functions, with particular attention to $f(z)=z^{q}$, where $q$ is a rational number.
In this note, we prove that for any ${\it\nu}>0$, there is no lacunary entire function $f(z)\in \mathbb{Q}[[z]]$ such that $f(\mathbb{Q})\subseteq \mathbb{Q}$ and $\text{den}f(p/q)\ll q^{{\it\nu}}$, for all sufficiently large $q$.
Let 𝕀 denote an imaginary quadratic field or the field ℚ of rational numbers and let ℤ𝕀 denote its ring of integers. We shall prove a new explicit Baker-type lower bound for a ℤ𝕀-linear form in the numbers 1, eα1 , . . . , eαm, m ⩾ 2, where α0 = 0, α1, . . . , αm are m + 1 different numbers from the field 𝕀. Our work gives substantial improvements on the existing explicit versions of Baker’s work about exponential values at rational points. In particular, dependencies on m are improved.
The approximation constant ${\it\lambda}_{k}({\it\zeta})$ is defined as the supremum of ${\it\eta}\in \mathbb{R}$ such that the estimate $\max _{1\leqslant j\leqslant k}\Vert {\it\zeta}^{j}x\Vert \leqslant x^{-{\it\eta}}$ has infinitely many integer solutions $x$. Here $\Vert .\Vert$ denotes the distance to the closest integer. We establish a connection on the joint spectrum $({\it\lambda}_{1}({\it\zeta}),{\it\lambda}_{2}({\it\zeta}),\ldots )$, which will lead to various improvements of known results on the individual spectrum of the approximation constants ${\it\lambda}_{k}({\it\zeta})$ as well. In particular, for given $k\geqslant 1$ and ${\it\lambda}\geqslant 1$, we construct ${\it\zeta}$ in the Cantor set with ${\it\lambda}_{k}({\it\zeta})={\it\lambda}$. Moreover, we establish an estimate for the uniform approximation constants $\widehat{{\it\lambda}}_{k}({\it\zeta})$, which enables us to determine classical approximation constants for Liouville numbers.
Let $\Vert \cdot \Vert$ denote the distance to the nearest integer and, for a prime number $p$, let $|\cdot |_{p}$ denote the $p$-adic absolute value. Over a decade ago, de Mathan and Teulié [Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), 229–245] asked whether $\inf _{q\geqslant 1}$$q\cdot \Vert q{\it\alpha}\Vert \cdot |q|_{p}=0$ holds for every badly approximable real number ${\it\alpha}$ and every prime number $p$. Among other results, we establish that, if the complexity of the sequence of partial quotients of a real number ${\it\alpha}$ grows too rapidly or too slowly, then their conjecture is true for the pair $({\it\alpha},p)$ with $p$ an arbitrary prime.
This paper considers algebraic independence and hypertranscendence of functions satisfying Mahler-type functional equations $af(z^{r})=f(z)+R(z)$, where $a$ is a nonzero complex number, $r$ an integer greater than 1, and $R(z)$ a rational function. Well-known results from the scope of Mahler’s method then imply algebraic independence over the rationals of the values of these functions at algebraic points. As an application, algebraic independence results on reciprocal sums of Fibonacci and Lucas numbers are obtained.
We consider classes of subsets of [0, 1], originally introduced by Falconer, that are closed under countable intersections, and such that every set in the class has Hausdorff dimension at least s. We provide a Frostman-type lemma to determine if a limsup set is in such a class. Suppose that E = lim sup En ⊂ [0, 1], and that μn are probability measures with support in En. If there exists a constant C such that
for all n, then, under suitable conditions on the limit measure of the sequence (μn), we prove that the set E is in the class .
As an application we prove that, for α > 1 and almost all λ ∈ (½, 1), the set
where and ak ∈ {0, 1}}, belongs to the class . This improves one of our previously published results.
Let $Q$ be an infinite subset of $\mathbb{N}$. For any ${\it\tau}>2$, denote $W_{{\it\tau}}(Q)$ (respectively $W_{{\it\tau}}$) to be the set of ${\it\tau}$ well-approximable points by rationals with denominators in $Q$ (respectively in $\mathbb{N}$). We consider the Hausdorff dimension of the liminf set $W_{{\it\tau}}\setminus W_{{\it\tau}}(Q)$ after Adiceam. By using the tools of continued fractions, it is shown that if $Q$ is a so-called $\mathbb{N}\setminus Q$-free set, the Hausdorff dimension of $W_{{\it\tau}}\setminus W_{{\it\tau}}(Q)$ is the same as that of $W_{{\it\tau}}$, i.e. $2/{\it\tau}$.
In this paper, we study transcendence theory for Thakur multizeta values in positive characteristic. We prove an analogue of the strong form of Goncharov’s conjecture. The same result is also established for Carlitz multiple polylogarithms at algebraic points.
Until recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.
However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can now establish upper bounds for class numbers of fields of larger discriminant. This new analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields that had previously been untreatable by any known method.
In this paper, we study in particular the cyclotomic fields of composite conductor.
In this note we shall prove the existence of an uncountable subset of Liouville numbers (which we call the set of ultra-Liouville numbers) for which there exist uncountably many transcendental analytic functions mapping the subset into itself.
We solve the equation ${x}^{a} + {x}^{b} + 1= {y}^{q} $ in positive integers $x, y, a, b$ and $q$ with $a\gt b$ and $q\geq 2$ coprime to $\phi (x)$. This requires a combination of a variety of techniques from effective Diophantine approximation, including lower bounds for linear forms in complex and $p$-adic logarithms, the hypergeometric method of Thue and Siegel applied $p$-adically, local methods, and the algorithmic resolution of Thue equations.
A small value estimate is a statement providing necessary conditions for the existence of certain sequences of non-zero polynomials with integer coefficients taking small values at points of an algebraic group. Such statements are desirable for applications to transcendental number theory to analyze the outcome of the construction of an auxiliary function. In this paper, we present a result of this type for the product $ \mathbb {G}_{\mathrm {a}}\times \mathbb {G}_{\mathrm {m}}$ whose underlying group of complex points is $\mathbb {C}\times \mathbb {C}^{*}$. It shows that if a certain sequence of non-zero polynomials in $ \mathbb {Z}[X_1,X_2]$ takes small values at a point $(\xi ,\eta )$ together with their first derivatives with respect to the invariant derivation $\partial /\partial X_1 + X_2 (\partial /\partial X_2)$, then both $\xi $ and $\eta $ are algebraic over $\mathbb {Q}$. The precise statement involves growth conditions on the degree and norm of these polynomials as well as on the absolute values of their derivatives. It improves on a direct application of Philippon’s criterion for algebraic independence and compares favorably with constructions coming from Dirichlet’s box principle.
Answering two questions of Beresnevich and Velani, we develop zero-one laws in both simultaneous and multiplicative Diophantine approximation. Our proofs mainly rely on a versatile Cassels–Gallagher type theorem and the cross fibering principle of Beresnevich, Haynes and Velani.
For $n= 1, 2, 3, \ldots $ let ${S}_{n} $ be the sum of the first $n$ primes. We mainly show that the sequence ${a}_{n} = \sqrt[n]{{S}_{n} / n}~(n= 1, 2, 3, \ldots )$ is strictly decreasing, and moreover the sequence ${a}_{n+ 1} / {a}_{n} ~(n= 10, 11, \ldots )$ is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
Let Q be an infinite set of positive integers. Denote by Wτ,n(Q) (respectively, Wτ,n) the set of points in dimension n≥1 that are simultaneously τ-approximable by infinitely many rationals with denominators in Q (respectively, in ℕ*). When n≥2 and τ>1+1/(n−1) , a non-trivial lower bound for the Hausdorff dimension of the liminf set Wτ,n ∖Wτ,n (Q)is established in the case where the set Q satisfies some divisibility properties. The computation of the actual value of this Hausdorff dimension and the one-dimensional analogue of the problem are also discussed.