To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
Fix an integer $n\geqslant 2$. To each non-zero point $\mathbf{u}$ in $\mathbb{R}^{n}$, one attaches several numbers called exponents of Diophantine approximation. However, as Khintchine first observed, these numbers are not independent of each other. This raises the problem of describing the set of all possible values that a given family of exponents can take by varying the point $\mathbf{u}$. To avoid trivialities, one restricts to points $\mathbf{u}$ whose coordinates are linearly independent over $\mathbb{Q}$. The resulting set of values is called the spectrum of these exponents. We show that, in an appropriate setting, any such spectrum is a compact connected set. In the case $n=3$, we prove moreover that it is a semi-algebraic set closed under component-wise minimum. For $n=3$, we also obtain a description of the spectrum of the exponents $(\text{}\underline{\unicode[STIX]{x1D711}}_{1},\text{}\underline{\unicode[STIX]{x1D711}}_{2},\text{}\underline{\unicode[STIX]{x1D711}}_{3},\overline{\unicode[STIX]{x1D711}}_{1},\overline{\unicode[STIX]{x1D711}}_{2},\overline{\unicode[STIX]{x1D711}}_{3})$ recently introduced by Schmidt and Summerer.
Let $b$ be an integer larger than 1. We give an asymptotic formula for the exponential sum
$$\begin{eqnarray}\mathop{\sum }_{\substack{ p\leqslant x \\ g(p)=k}}\exp \big(2\text{i}\unicode[STIX]{x1D70B}\unicode[STIX]{x1D6FD}p\big),\end{eqnarray}$$
where the summation runs over prime numbers $p$ and where $\unicode[STIX]{x1D6FD}\in \mathbb{R}$, $k\in \mathbb{Z}$, and $g:\mathbb{N}\rightarrow \mathbb{Z}$ is a strongly $b$-additive function such that $\operatorname{pgcd}(g(1),\ldots ,g(b-1))=1$.
In this short note, considering functions, we show that taking an asymptotic viewpoint allows one to prove strong transcendence statements in many general situations. In particular, as a consequence of a more general result, we show that if $F(z)\in \mathbb{C}[[z]]$ is a power series with coefficients from a finite set, then $F(z)$ is either rational or it is transcendental over the field of meromorphic functions.
Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over $\mathbb{Q}$ with good reduction away from 3, up to $\mathbb{Q}$-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined and an application to a question of Ihara is discussed.
We transpose the parametric geometry of numbers, recently created by Schmidt and Summerer, to fields of rational functions in one variable and analyze, in that context, the problem of simultaneous approximation to exponential functions.
for infinitely many primes $p$ that supersede those of Harman [Trigonometric sums over primes I. Mathematika28 (1981), 249–254; Trigonometric sums over primes II. Glasg. Math. J.24 (1983), 23–37] and Wong [On the distribution of $\unicode[STIX]{x1D6FC}p^{k}$ modulo 1. Glasg. Math. J.39 (1997), 121–130].
Let $S=\{q_{1},\ldots ,q_{s}\}$ be a finite, non-empty set of distinct prime numbers. For a non-zero integer $m$, write $m=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}M$, where $r_{1},\ldots ,r_{s}$ are non-negative integers and $M$ is an integer relatively prime to $q_{1}\cdots q_{s}$. We define the $S$-part $[m]_{S}$ of $m$ by $[m]_{S}:=q_{1}^{r_{1}}\cdots q_{s}^{r_{s}}$. Let $(u_{n})_{n\geqslant 0}$ be a linear recurrence sequence of integers. Under certain necessary conditions, we establish that for every $\unicode[STIX]{x1D700}>0$, there exists an integer $n_{0}$ such that $[u_{n}]_{S}\leqslant |u_{n}|^{\unicode[STIX]{x1D700}}$ holds for $n>n_{0}$. Our proof is ineffective in the sense that it does not give an explicit value for $n_{0}$. Under various assumptions on $(u_{n})_{n\geqslant 0}$, we also give effective, but weaker, upper bounds for $[u_{n}]_{S}$ of the form $|u_{n}|^{1-c}$, where $c$ is positive and depends only on $(u_{n})_{n\geqslant 0}$ and $S$.
This paper is motivated by Davenport’s problem and the subsequent work regarding badly approximable points in submanifolds of a Euclidean space. We study the problem in the area of twisted Diophantine approximation and present two different approaches. The first approach shows that, under a certain restriction, any countable intersection of the sets of weighted badly approximable points on any non-degenerate ${\mathcal{C}}^{1}$ submanifold of $\mathbb{R}^{n}$ has full dimension. In the second approach, we introduce the property of isotropically winning and show that the sets of weighted badly approximable points are isotropically winning under the same restriction as above.
Introduced in Schmidt and Summerer [Parametric geometry of numbers and applications. Acta Arith.140 (2009), 67–91], approximation exponents $\text{}\underline{\unicode[STIX]{x1D711}}_{i},\overline{\unicode[STIX]{x1D711}}_{i}$, $(i=1,2,3)$, attached to points $\boldsymbol{\unicode[STIX]{x1D709}}=(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})$ in $\mathbb{R}^{2}$, give information on Diophantine approximation properties of these points. Laurent [Exponents of Diophantine approximation in dimension two. Canad. J. Math.61 (2009), 165–189] had described all possible quadruples $(\text{}\underline{\unicode[STIX]{x1D711}}_{1},\overline{\unicode[STIX]{x1D711}}_{1},\text{}\underline{\unicode[STIX]{x1D711}}_{3},\overline{\unicode[STIX]{x1D711}}_{3})$ arising in this way. Our emphasis here will be on $\text{}\underline{\unicode[STIX]{x1D711}}_{2},\overline{\unicode[STIX]{x1D711}}_{2}$ and the construction of suitable “$3$-systems”.
We study the Hausdorff measure and dimension of the set of intrinsically simultaneously $\unicode[STIX]{x1D713}$-approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done in the case of curves.
In 1939, Erdös and Mahler [‘Some arithmetical properties of the convergents of a continued fraction’, J. Lond. Math. Soc. (2)14 (1939), 12–18] studied some arithmetical properties of the convergents of a continued fraction. In particular, they raised a conjecture related to continued fractions and Liouville numbers. In this paper, we shall apply the theory of linear forms in logarithms to obtain a result in the direction of this problem.
We improve the known upper bound for the number of Diophantine $D(4)$-quintuples by using the most recent methods that were developed in the $D(1)$ case. More precisely, we prove that there are at most $6.8587\times 10^{29}$$D(4)$-quintuples.
We prove a result in the area of twisted Diophantine approximation related to the theory of Schmidt games. In particular, under certain restrictions we give an affirmative answer to the analogue in this setting of a famous conjecture of Schmidt from Diophantine approximation.
In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].
We prove that a nonreal algebraic number $\unicode[STIX]{x1D703}$ with modulus greater than $1$ is a complex Pisot number if and only if there is a nonzero complex number $\unicode[STIX]{x1D706}$ such that the sequence of fractional parts $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$ has a finite number of limit points. Also, we characterise those complex Pisot numbers $\unicode[STIX]{x1D703}$ for which there is a convergent sequence of the form $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$ for some $\unicode[STIX]{x1D706}\in \mathbb{C}^{\ast }$. These results are generalisations of the corresponding real ones, due to Pisot, Vijayaraghavan and Dubickas.
In this short note, we give a proof, conditional on the generalised Riemann hypothesis, that there exist numbers $x$ which are normal with respect to the continued fraction expansion but not to any base-$b$ expansion. This partially answers a question of Bugeaud.
We show that Ribet sections are the only obstruction to the validity of the relative Manin–Mumford conjecture for one-dimensional families of semi-abelian surfaces. Applications include special cases of the Zilber–Pink conjecture for curves in a mixed Shimura variety of dimension 4, as well as the study of polynomial Pell equations with non-separable discriminants.
We study transcendence properties of certain infinite products of cyclotomic polynomials. In particular, we determine all cases in which the product is hypertranscendental. We then use various results from Mahler’s transcendence method to obtain algebraic independence results on such functions and their values.