We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We generalize the Cohen–Lenstra heuristics over function fields to étale group schemes $G$ (with the classical case of abelian groups corresponding to constant group schemes). By using the results of Ellenberg–Venkatesh–Westerland, we make progress towards the proof of these heuristics. Moreover, by keeping track of the image of the Weil-pairing as an element of $\wedge ^{2}G(1)$, we formulate more refined heuristics which nicely explain the deviation from the usual Cohen–Lenstra heuristics for abelian $\ell$-groups in cases where $\ell \mid q-1$; the nature of this failure was suggested already in the works of Malle, Garton, Ellenberg–Venkatesh–Westerland, and others. On the purely large random matrix side, we provide a natural model which has the correct moments, and we conjecture that these moments uniquely determine a limiting probability measure.
Since Rob Pollack and Glenn Stevens used overconvergent modular symbols to construct $p$-adic $L$-functions for non-critical slope rational modular forms, the theory has been extended to construct $p$-adic $L$-functions for non-critical slope automorphic forms over totally real and imaginary quadratic fields by the first and second authors, respectively. In this paper, we give an analogous construction over a general number field. In particular, we start by proving a control theorem stating that the specialisation map from overconvergent to classical modular symbols is an isomorphism on the small slope subspace. We then show that if one takes the modular symbol attached to a small slope cuspidal eigenform, then one can construct a ray class distribution from the corresponding overconvergent symbol, which moreover interpolates critical values of the $L$-function of the eigenform. We prove that this distribution is independent of the choices made in its construction. We define the $p$-adic $L$-function of the eigenform to be this distribution.
Let $p$ be a prime and let $G$ be a finite group. By a celebrated theorem of Swan, two finitely generated projective $\mathbb{Z}_{p}[G]$-modules $P$ and $P^{\prime }$ are isomorphic if and only if $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P$ and $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P^{\prime }$ are isomorphic as $\mathbb{Q}_{p}[G]$-modules. We prove an Iwasawa-theoretic analogue of this result and apply this to the Iwasawa theory of local and global fields. We thereby determine the structure of natural Iwasawa modules up to (pseudo-)isomorphism.
We establish some supercongruences for the truncated $_{2}F_{1}$ and $_{3}F_{2}$ hypergeometric series involving the $p$-adic gamma functions. Some of these results extend the four Rodriguez-Villegas supercongruences on the truncated $_{3}F_{2}$ hypergeometric series. Related supercongruences modulo $p^{3}$ are proposed as conjectures.
Let $G$ be a $p$-adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$, the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$, into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.
A recent result by the authors gives an explicit construction for a universal deformation of a formal group $\unicode[STIX]{x1D6F7}$ of finite height over a finite field $k$. This provides in particular a parametrization of the set of deformations of $\unicode[STIX]{x1D6F7}$ over the ring ${\mathcal{O}}$ of Witt vectors over $k$. Another parametrization of the same set can be obtained through the Dieudonné theory. We find an explicit relation between these parameterizations. As a consequence, we obtain an explicit expression for the action of $\text{Aut}_{k}(\unicode[STIX]{x1D6F7})$ on the set of ${\mathcal{O}}$-deformations of $\unicode[STIX]{x1D6F7}$ in the coordinate system defined by the universal deformation. This generalizes a formula of Gross and Hopkins and the authors’ result for one-dimensional formal groups.
We present a new construction of the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ via the patching method of Taylor–Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the $p$-adic Langlands program; in particular, it gives a new proof of many cases of the second author’s local–global compatibility theorem and relaxes a hypothesis on the local mod $p$ representation in that theorem.
Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.
Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\overline{\mathbb{F}}_{p})$ is a continuous irreducible Galois representation such that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ is upper-triangular, maximally non-split, and generic. If $\overline{r}$ is automorphic, and some suitable technical conditions hold, we show that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ can be recovered from the $\text{GL}_{3}(F_{w})$-action on a space of mod $p$ automorphic forms on a compact unitary group. On the way we prove results about weights in Serre’s conjecture for $\overline{r}$, show the existence of an ordinary lifting of $\overline{r}$, and prove the freeness of certain Taylor–Wiles patched modules in this context. We also show the existence of many Galois representations $\overline{r}$ to which our main theorem applies.
We describe the ramification in cyclic extensions arising from the Kummer theory of the Weil restriction of the multiplicative group. This generalises the classical theory of Hecke describing the ramification of Kummer extensions.
In this article we show that the quotient ${\mathcal{M}}_{\infty }/B(\mathbb{Q}_{p})$ of the Lubin–Tate space at infinite level ${\mathcal{M}}_{\infty }$ by the Borel subgroup of upper triangular matrices $B(\mathbb{Q}_{p})\subset \operatorname{GL}_{2}(\mathbb{Q}_{p})$ exists as a perfectoid space. As an application we show that Scholze’s functor $H_{\acute{\text{e}}\text{t}}^{i}(\mathbb{P}_{\mathbb{C}_{p}}^{1},{\mathcal{F}}_{\unicode[STIX]{x1D70B}})$ is concentrated in degree one whenever $\unicode[STIX]{x1D70B}$ is an irreducible principal series representation or a twist of the Steinberg representation of $\operatorname{GL}_{2}(\mathbb{Q}_{p})$.
Let $k$ be a finite extension of $\mathbb{Q}_{p}$, let ${\mathcal{G}}$ be an absolutely simple split reductive group over $k$, and let $K$ be a maximal unramified extension of $k$. To each point in the Bruhat–Tits building of ${\mathcal{G}}_{K}$, Moy and Prasad have attached a filtration of ${\mathcal{G}}(K)$ by bounded subgroups. In this paper we give necessary and sufficient conditions for the dual of the first Moy–Prasad filtration quotient to contain stable vectors for the action of the reductive quotient. Our work extends earlier results by Reeder and Yu, who gave a classification in the case when $p$ is sufficiently large. By passing to a finite unramified extension of $k$ if necessary, we obtain new supercuspidal representations of ${\mathcal{G}}(k)$.
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic $p$ representations of Galois groups over $F$ arise from Hilbert modular forms. Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois representation at primes over $p$. This characterization of the weights, which is formulated using $p$-adic Hodge theory, is known under mild technical hypotheses if $p>2$. In this paper we give, under the assumption that $p$ is unramified in $F$, a conjectural alternative description for the set of weights. Our approach is to use the Artin–Hasse exponential and local class field theory to construct bases for local Galois cohomology spaces in terms of which we identify subspaces that should correspond to ones defined using $p$-adic Hodge theory. The resulting conjecture amounts to an explicit description of wild ramification in reductions of certain crystalline Galois representations. It enables the direct computation of the set of Serre weights of a Galois representation, which we illustrate with numerical examples. A proof of this conjecture has been announced by Calegari, Emerton, Gee and Mavrides.
Let $K$ be a complete discrete valuation field of mixed characteristic $(0,p)$ with perfect residue field. Let $(\unicode[STIX]{x1D70B}_{n})_{n\geqslant 0}$ be a system of $p$-power roots of a uniformizer $\unicode[STIX]{x1D70B}=\unicode[STIX]{x1D70B}_{0}$ of $K$ with $\unicode[STIX]{x1D70B}_{n+1}^{p}=\unicode[STIX]{x1D70B}_{n}$, and define $G_{s}$ (resp. $G_{\infty }$) the absolute Galois group of $K(\unicode[STIX]{x1D70B}_{s})$ (resp. $K_{\infty }:=\bigcup _{n\geqslant 0}K(\unicode[STIX]{x1D70B}_{n})$). In this paper, we study $G_{s}$-equivariantness properties of $G_{\infty }$-equivariant homomorphisms between torsion crystalline representations.
Let $F$ be a totally real number field, ${\wp}$ a place of $F$ above $p$. Let ${\it\rho}$ be a $2$-dimensional $p$-adic representation of $\text{Gal}(\overline{F}/F)$ which appears in the étale cohomology of quaternion Shimura curves (thus ${\it\rho}$ is associated to Hilbert eigenforms). When the restriction ${\it\rho}_{{\wp}}:={\it\rho}|_{D_{{\wp}}}$ at the decomposition group of ${\wp}$ is semistable noncrystalline, one can associate to ${\it\rho}_{{\wp}}$ the so-called Fontaine–Mazur ${\mathcal{L}}$-invariants, which are however invisible in the classical local Langlands correspondence. In this paper, we prove one can find these ${\mathcal{L}}$-invariants in the completed cohomology group of quaternion Shimura curves, which generalizes some of Breuil’s results [Breuil, Astérisque, 331 (2010), 65–115] in the $\text{GL}_{2}/\mathbb{Q}$-case.
We propose an algorithm to verify the $p$-part of the class number for a number field $K$, provided $K$ is totally real and an abelian extension of the rational field $\mathbb{Q}$, and $p$ is any prime. On fields of degree 4 or higher, this algorithm has been shown heuristically to be faster than classical algorithms that compute the entire class number, with improvement increasing with larger field degrees.
Let $K$ be a finite extension of $\mathbb{Q}_{p}$ and let $\bar{\unicode[STIX]{x1D70C}}$ be a continuous, absolutely irreducible representation of its absolute Galois group with values in a finite field of characteristic $p$. We prove that the Galois representations that become crystalline of a fixed regular weight after an abelian extension are Zariski-dense in the generic fiber of the universal deformation ring of $\bar{\unicode[STIX]{x1D70C}}$. In fact we deduce this from a similar density result for the space of trianguline representations. This uses an embedding of eigenvarieties for unitary groups into the spaces of trianguline representations as well as the corresponding density claim for eigenvarieties as a global input.
A conjectural generalization of the McKay correspondence in terms of stringy invariants to arbitrary characteristics, including the wild case, was recently formulated by the author in the case where the given finite group acts linearly on an affine space. In cases of very special groups and representations, the conjecture has been verified and related stringy invariants have been explicitly computed. In this paper, we try to generalize the conjecture and computations to more complicated situations such as nonlinear actions on possibly singular spaces and nonpermutation representations of nonabelian groups.
We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$-adic hypergeometric function for any odd prime $d$.
We prove a subconvexity bound for the central value $L(\frac{1}{2},{\it\chi})$ of a Dirichlet $L$-function of a character ${\it\chi}$ to a prime power modulus $q=p^{n}$ of the form $L(\frac{1}{2},{\it\chi})\ll p^{r}q^{{\it\theta}+{\it\epsilon}}$ with a fixed $r$ and ${\it\theta}\approx 0.1645<\frac{1}{6}$, breaking the long-standing Weyl exponent barrier. In fact, we develop a general new theory of estimation of short exponential sums involving $p$-adically analytic phases, which can be naturally seen as a $p$-adic analogue of the method of exponent pairs. This new method is presented in a ready-to-use form and applies to a wide class of well-behaved phases including many that arise from a stationary phase analysis of hyper-Kloosterman and other complete exponential sums.