We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a necessary and sufficient condition for isogenous elliptic curves based on the algebraic dependence of p-adic elliptic functions. As a consequence, we give a short proof of the p-adic analogue of Schneider’s theorem on the linear independence of p-adic elliptic logarithms of algebraic points on two nonisogenous elliptic curves defined over the field of algebraic numbers.
The plus and minus norm groups are constructed by Kobayashi as subgroups of the formal group of an elliptic curve with supersingular reduction, and they play an important role in Kobayashi’s definition of the signed Selmer groups. In this paper, we study the cohomology of these plus and minus norm groups. In particular, we show that these plus and minus norm groups are cohomologically trivial. As an application of our analysis, we establish certain (quasi-)projectivity properties of the non-primitive mixed signed Selmer groups of an elliptic curve with good reduction at all primes above p. We then build on these projectivity results to derive a Kida formula for the signed Selmer groups under a slight weakening of the usual µ = 0 assumption, and study the integrality property of the characteristic element attached to the signed Selmer groups.
Let G be a reductive p-adic group which splits over an unramified extension of the ground field. Hiraga, Ichino and Ikeda [24] conjectured that the formal degree of a square-integrable G-representation
$\pi $
can be expressed in terms of the adjoint
$\gamma $
-factor of the enhanced L-parameter of
$\pi $
. A similar conjecture was posed for the Plancherel densities of tempered irreducible G-representations.
We prove these conjectures for unipotent G-representations. We also derive explicit formulas for the involved adjoint
$\gamma $
-factors.
The principal aim of this article is to attach and study $p$-adic $L$-functions to cohomological cuspidal automorphic representations $\Pi$ of $\operatorname {GL}_{2n}$ over a totally real field $F$ admitting a Shalika model. We use a modular symbol approach, along the global lines of the work of Ash and Ginzburg, but our results are more definitive because we draw heavily upon the methods used in the recent and separate works of all three authors. By construction, our $p$-adic $L$-functions are distributions on the Galois group of the maximal abelian extension of $F$ unramified outside $p\infty$. Moreover, we work under a weaker Panchishkine-type condition on $\Pi _p$ rather than the full ordinariness condition. Finally, we prove the so-called Manin relations between the $p$-adic $L$-functions at all critical points. This has the striking consequence that, given a unitary $\Pi$ whose standard $L$-function admits at least two critical points, and given a prime $p$ such that $\Pi _p$ is ordinary, the central critical value $L(\frac {1}{2}, \Pi \otimes \chi )$ is non-zero for all except finitely many Dirichlet characters $\chi$ of $p$-power conductor.
Étant donné un groupe réductif $G$ sur une extension de degré fini de $\mathbb {Q}_p$ on classifie les $G$-fibrés sur la courbe introduite dans Fargues and Fontaine [Courbes et fibrés vectoriels en théorie de Hodge$p$-adique, Astérisque 406 (2018)]. Le résultat est interprété en termes de l'ensemble $B(G)$ de Kottwitz. On calcule également la cohomologie étale de la courbe à coefficients de torsion en lien avec la théorie du corps de classe local.
Many phenomena in geometry and analysis can be explained via the theory of $D$-modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$-modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$-class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$-class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$-class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$-class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$-class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.
Let $F$ be a $p$-adic field and choose $k$ an algebraic closure of $\mathbb{F}_{\ell }$, with $\ell$ different from $p$. We define “nilpotent lifts” of irreducible generic $k$-representations of $GL_{n}(F)$, which take coefficients in Artin local $k$-algebras. We show that an irreducible generic $\ell$-modular representation $\unicode[STIX]{x1D70B}$ of $GL_{n}(F)$ is uniquely determined by its collection of Rankin–Selberg gamma factors $\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D70B}\times \widetilde{\unicode[STIX]{x1D70F}},X,\unicode[STIX]{x1D713})$ as $\widetilde{\unicode[STIX]{x1D70F}}$ varies over nilpotent lifts of irreducible generic $k$-representations $\unicode[STIX]{x1D70F}$ of $GL_{t}(F)$ for $t=1,\ldots ,\lfloor \frac{n}{2}\rfloor$. This gives a characterization of the mod-$\ell$ local Langlands correspondence in terms of gamma factors, assuming it can be extended to a surjective local Langlands correspondence on nilpotent lifts.
It is proven that, for a wide range of integers s (2 < s < p − 2), the existence of a single wildly ramified odd prime l ≠ p leads to either the alternating group or the full symmetric group as Galois group of any irreducible trinomial Xp + aXs + b of prime degree p.
Let $f:X\rightarrow X$ be a quasi-finite endomorphism of an algebraic variety $X$ defined over a number field $K$ and fix an initial point $a\in X$. We consider a special case of the Dynamical Mordell–Lang Conjecture, where the subvariety $V$ contains only finitely many periodic points and does not contain any positive-dimensional periodic subvariety. We show that the set $\{n\in \mathbb{Z}_{{\geqslant}0}\mid f^{n}(a)\in V\}$ satisfies a strong gap principle.
We consider a certain two-parameter family of automorphisms of the affine plane over a complete, locally compact non-Archimedean field. Each of these automorphisms admits a chaotic attractor on which it is topologically conjugate to a full two-sided shift map, and the attractor supports a unit Borel measure which describes the distribution of the forward orbit of Haar-almost all points in the basin of attraction. We also compute the Hausdorff dimension of the attractor, which is non-integral.
We show that compatible systems of $\ell$-adic sheaves on a scheme of finite type over the ring of integers of a local field are compatible along the boundary up to stratification. This extends a theorem of Deligne on curves over a finite field. As an application, we deduce the equicharacteristic case of classical conjectures on $\ell$-independence for proper smooth varieties over complete discrete valuation fields. Moreover, we show that compatible systems have compatible ramification. We also prove an analogue for integrality along the boundary.
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group ${\mathcal{W}}_{F}$. Let $\unicode[STIX]{x1D70E}$ be an irreducible smooth complex representation of ${\mathcal{W}}_{F}$, realized as the Langlands parameter of an irreducible cuspidal representation $\unicode[STIX]{x1D70B}$ of a general linear group over $F$. In an earlier paper we showed that the ramification structure of $\unicode[STIX]{x1D70E}$ is determined by the fine structure of the endo-class $\unicode[STIX]{x1D6E9}$ of the simple character contained in $\unicode[STIX]{x1D70B}$, in the sense of Bushnell and Kutzko. The connection is made via the Herbrand function $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ of $\unicode[STIX]{x1D6E9}$. In this paper we concentrate on the fundamental Carayol case in which $\unicode[STIX]{x1D70E}$ is totally wildly ramified with Swan exponent not divisible by $p$. We show that, for such $\unicode[STIX]{x1D70E}$, the associated Herbrand function satisfies a certain functional equation, and that this property essentially characterizes this class of representations. We calculate $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ explicitly, in terms of a classical Herbrand function arising naturally from the classification of simple characters. We describe exactly the class of functions arising as Herbrand functions $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6EF}}$, as $\unicode[STIX]{x1D6EF}$ varies over the set of totally wild endo-classes of Carayol type. In a separate argument, we derive a complete description of the restriction of $\unicode[STIX]{x1D70E}$ to any ramification subgroup and hence a detailed interpretation of the Herbrand function. This gives concrete information concerning the Langlands correspondence.
A result of Bleher, Chinburg, Greenberg, Kakde, Pappas, Sharifi and Taylor has initiated the topic of higher codimension Iwasawa theory. As a generalization of the classical Iwasawa main conjecture, they prove a relationship between analytic objects (a pair of Katz’s $2$-variable $p$-adic $L$-functions) and algebraic objects (two ‘everywhere unramified’ Iwasawa modules) involving codimension two cycles in a $2$-variable Iwasawa algebra. We prove a result by considering the restriction to an imaginary quadratic field $K$ (where an odd prime $p$ splits) of an elliptic curve $E$, defined over $\mathbb{Q}$, with good supersingular reduction at $p$. On the analytic side, we consider eight pairs of $2$-variable $p$-adic $L$-functions in this setup (four of the $2$-variable $p$-adic $L$-functions have been constructed by Loeffler and a fifth $2$-variable $p$-adic $L$-function is due to Hida). On the algebraic side, we consider modifications of fine Selmer groups over the $\mathbb{Z}_{p}^{2}$-extension of $K$. We also provide numerical evidence, using algorithms of Pollack, towards a pseudonullity conjecture of Coates–Sujatha.
We prove an upper bound on the log canonical threshold of a hypersurface that satisfies a certain power condition and use it to prove several generalizations of Igusa’s conjecture on exponential sums, with the log canonical threshold in the exponent of the estimates. We show that this covers optimally all situations of the conjectures for nonrational singularities by comparing the log canonical threshold with a local notion of the motivic oscillation index.
Given a property of representations satisfying a basic stability condition, Ramakrishna developed a variant of Mazur’s Galois deformation theory for representations with that property. We introduce an axiomatic definition of pseudorepresentations with such a property. Among other things, we show that pseudorepresentations with a property enjoy a good deformation theory, generalizing Ramakrishna’s theory to pseudorepresentations.
Let $p$ be an odd prime number and $E$ an elliptic curve defined over a number field $F$ with good reduction at every prime of $F$ above $p$. We compute the Euler characteristics of the signed Selmer groups of $E$ over the cyclotomic $\mathbb{Z}_{p}$-extension. The novelty of our result is that we allow the elliptic curve to have mixed reduction types for primes above $p$ and mixed signs in the definition of the signed Selmer groups.
For a character of the absolute Galois group of a complete discrete valuation field, we define a lifting of the refined Swan conductor, using higher dimensional class field theory.
Let $p$ be a prime, let $K$ be a complete discrete valuation field of characteristic $0$ with a perfect residue field of characteristic $p$, and let $G_{K}$ be the Galois group. Let $\unicode[STIX]{x1D70B}$ be a fixed uniformizer of $K$, let $K_{\infty }$ be the extension by adjoining to $K$ a system of compatible $p^{n}$th roots of $\unicode[STIX]{x1D70B}$ for all $n$, and let $L$ be the Galois closure of $K_{\infty }$. Using these field extensions, Caruso constructs the $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D70F})$-modules, which classify $p$-adic Galois representations of $G_{K}$. In this paper, we study locally analytic vectors in some period rings with respect to the $p$-adic Lie group $\operatorname{Gal}(L/K)$, in the spirit of the work by Berger and Colmez. Using these locally analytic vectors, and using the classical overconvergent $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules, we can establish the overconvergence property of the $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D70F})$-modules.
We show that the Galois cohomology groups of $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ can be computed via the generalization of Herr’s complex to multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. Using Tate duality and a pairing for multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules we extend this to analogues of the Iwasawa cohomology. We show that all $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ are overconvergent and, moreover, passing to overconvergent multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules is an equivalence of categories. Finally, we prove that the overconvergent Herr complex also computes the Galois cohomology groups.
We discuss the generalizations of the concept of Chebyshev’s bias from two perspectives. First, we give a general framework for the study of prime number races and Chebyshev’s bias attached to general L-functions satisfying natural analytic hypotheses. This extends the cases previously considered by several authors and involving, among others, Dirichlet L-functions and Hasse–Weil L-functions of elliptic curves over Q. This also applies to new Chebyshev’s bias phenomena that were beyond the reach of the previously known cases. In addition, we weaken the required hypotheses such as GRH or linear independence properties of zeros of L-functions. In particular, we establish the existence of the logarithmic density of the set $ \{x \ge 2:\sum\nolimits_{p \le x} {\lambda _f}(p) \ge 0\}$ for coefficients (λf(p)) of general L-functions conditionally on a much weaker hypothesis than was previously known.