To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive bivariate polynomial formulae for cocycles and coboundaries in Z2(ℤpn,ℤpn), and a basis for the (pn−1−n)-dimensional GF(pn)-space of coboundaries. When p=2 we determine a basis for the -dimensional GF(2n)-space of cocycles and show that each cocycle has a unique decomposition as a direct sum of a coboundary and a multiplicative cocycle of restricted form.
For any abelian group G and any function f: G → G we define a commutative binary operation or ‘multiplication’ on G in terms of f. We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p–group of odd order, we classify those functions which extend G to a ring and show, under an equivalence relation we call weak isomorphism, that there are precisely six distinct classes of rings constructed using this method with additive group the elementary abelian p–group of odd order p2.
We introduce a class of polynomials which induce a permutation on the set of polynomials in one variable of degree less than m over a finite field. We call then Am-permutation polynomials. We also give three criteria to characterize such polynomials.
We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.
The higher Lie characters of the symmetric group Sn arise from the Poincaré-Birkhoff-Witt basis of the free associative algebra. They are indexed by the partitions of n and sum up to the regular character of Sn. A combinatorial description of the multiplicities of their irreducible components is given. As a special case the Kraśkiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.
For any positive integer q≧2, let Fq be a finite field with q elements, Fq ((z-1)) be the field of all formal Laurent series in an inderminate z, I denote the valuation ideal z-1Fq [[z-1]] in the ring of formal power series Fq ((z-1)) normalized by P(l) = 1. For any x ∈ I, let the series be the Engel expansin of Laurent series of x. Grabner and Knopfmacher have shown that the P-measure of the set A(α) = {x ∞ I: limn→∞ deg an(x)/n = ά} is l when α = q/(q -l), where deg an(x) is the degree of polynomial an(x). In this paper, we prove that for any α ≧ l, A(α) has Hausdorff dimension l. Among other thing we also show that for any integer m, the following set B(m) = {x ∈ l: deg an+1(x) - deg an(x) = m for any n ≧ l} has Hausdorff dimension 1.
We consider ineducible Goppa codes of length qm over Fq defined by polynomials of degree r, where q = pt and p, m, r are distinct primes. The number of such codes, inequivalent under coordinate permutations and field automorphisms, is determined.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
Recently Bombieri and Sperber have jointly created a new construction for estimating exponential sums on quasiprojective varieties over finite fields. In this paper we apply their construction to estimate hybrid exponential sums on quasiprojective varieties over finite fields. In doing this we utilize a result of Aldolphson and Sperber concerning the degree of the L-function associated with a certain exponential sum.
For a class of functions containing polynomials over ℤm, we give an inequality relating the cardinality of the value set to the additive order of differences of elements in that set. To do this, we find some inequalities concerning the combinatorics of substrings of sequences on finite sets which are related to an interesting matrix inequality.
We study polynomials over an integral domain R which, for infinitely many prime ideals P, induce a permutation of R/P. In many cases, every polynomial with this property must be a composition of Dickson polynomials and of linear polynomials with coefficients in the quotient field of R. In order to find out which of these compositions have the required property we investigate some number theoretic aspects of composition of polynomials. The paper includes a rather elementary proof of ‘Schur's Conjecture’ and contains a quantitative version for polynomials of prime degree.
For a polynomial f(x) over a finite field Fq, denote the polynomial f(y)−f(x) by ϕf(x, y). The polynomial ϕf has frequently been used in questions on the values of f. The existence is proved here of a polynomial F over Fq of the form F = Lr, where L is an affine linearized polynomial over Fq, such that f = g(F) for some polynomial g and the part of ϕf which splits completely into linear factors over the algebraic closure of Fq is exactly φF. This illuminates an aspect of work of D. R. Hayes and Daqing Wan on the existence of permutation polynomials of even degree. Related results on value sets, including the exhibition of a class of permutation polynomials, are also mentioned.