To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain new bounds on short Weil sums over small multiplicative subgroups of prime finite fields which remain nontrivial in the range the classical Weil bound is already trivial. The method we use is a blend of techniques coming from algebraic geometry and additive combinatorics.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
Given $A\subseteq GL_2(\mathbb {F}_q)$, we prove that there exist disjoint subsets $B, C\subseteq A$ such that $A = B \sqcup C$ and their additive and multiplicative energies satisfying
In this paper, we study the stability of the ring solution of the N-body problem in the entire sphere $\mathbb {S}^2$ by using the logarithmic potential proposed in Boatto et al. (2016, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 472, 20160020) and Dritschel (2019, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 377, 20180349), derived through a definition of central force and Hodge decomposition theorem for 1-forms in manifolds. First, we characterize the ring solution and study its spectral stability, obtaining regions (spherical caps) where the ring solution is spectrally stable for $2\leq N\leq 6$, while, for $N\geq 7$, the ring is spectrally unstable. The nonlinear stability is studied by reducing the system to the homographic regular polygonal solutions, obtaining a 2-d.o.f. Hamiltonian system, and therefore some classic results on stability for 2-d.o.f. Hamiltonian systems are applied to prove that the ring solution is unstable at any parallel where it is placed. Additionally, this system can be reduced to 1-d.o.f. by using the angular momentum integral, which enables us to describe the phase portraits and use them to find periodic ring solutions to the full system. Some of those solutions are numerically approximated.
Let q be an odd prime power and suppose that $a,b\in \mathbb {F}_q$ are such that $ab$ and $(1{-}a)(1{-}b)$ are nonzero squares. Let $Q_{a,b} = (\mathbb {F}_q,*)$ be the quasigroup in which the operation is defined by $u*v=u+a(v{-}u)$ if $v-u$ is a square, and $u*v=u+b(v{-}u)$ if $v-u$ is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies $x*(y*z) = (x*y)*z \Leftrightarrow x=y=z$. Denote by $\sigma (q)$ the number of $(a,b)$ for which $Q_{a,b}$ is maximally nonassociative. We show that there exist constants $\alpha \approx 0.029\,08$ and $\beta \approx 0.012\,59$ such that if $q\equiv 1 \bmod 4$, then $\lim \sigma (q)/q^2 = \alpha $, and if $q \equiv 3 \bmod 4$, then $\lim \sigma (q)/q^2 = \beta $.
We improve to nearly optimal the known asymptotic and explicit bounds for the number of $\mathbb {F}_q$-rational points on a geometrically irreducible hypersurface over a (large) finite field. The proof involves a Bertini-type probabilistic combinatorial technique. Namely, we slice the given hypersurface with a random plane.
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.
Given $E \subseteq \mathbb {F}_q^d \times \mathbb {F}_q^d$, with the finite field $\mathbb {F}_q$ of order q and the integer $d\,\ge \, 2$, we define the two-parameter distance set $\Delta _{d, d}(E)=\{(\|x-y\|, \|z-t\|) : (x, z), (y, t) \in E \}$. Birklbauer and Iosevich [‘A two-parameter finite field Erdős–Falconer distance problem’, Bull. Hellenic Math. Soc.61 (2017), 21–30] proved that if $|E| \gg q^{{(3d+1)}/{2}}$, then $ |\Delta _{d, d}(E)| = q^2$. For $d=2$, they showed that if $|E| \gg q^{{10}/{3}}$, then $ |\Delta _{2, 2}(E)| \gg q^2$. In this paper, we give extensions and improvements of these results. Given the diagonal polynomial $P(x)=\sum _{i=1}^da_ix_i^s\in \mathbb F_q[x_1,\ldots , x_d]$, the distance induced by P over $\mathbb {F}_q^d$ is $\|x-y\|_s:=P(x-y)$, with the corresponding distance set $\Delta ^s_{d, d}(E)=\{(\|x-y\|_s, \|z-t\|_s) : (x, z), (y, t) \in E \}$. We show that if $|E| \gg q^{{(3d+1)}/{2}}$, then $ |\Delta _{d, d}^s(E)| \gg q^2$. For $d=2$ and the Euclidean distance, we improve the former result over prime fields by showing that $ |\Delta _{2,2}(E)| \gg p^2$ for $|E| \gg p^{{13}/{4}}$.
A Sidon set is a subset of an Abelian group with the property that the sums of two distinct elements are distinct. We relate the Sidon sets constructed by Bose to affine subspaces of $ \mathbb {F} _ {q ^ 2} $ of dimension one. We define Sidon arrays which are combinatorial objects giving a partition of the group $\mathbb {Z}_{q ^ 2} $ as a union of Sidon sets. We also use linear recurring sequences to quickly obtain Bose-type Sidon sets without the need to use the discrete logarithm.
We prove that for any prime power $q\notin \{3,4,5\}$, the cubic extension $\mathbb {F}_{q^{3}}$ of the finite field $\mathbb {F}_{q}$ contains a primitive element $\xi $ such that $\xi +\xi ^{-1}$ is also primitive, and $\operatorname {\mathrm {Tr}}_{\mathbb {F}_{q^{3}}/\mathbb {F}_{q}}(\xi )=a$ for any prescribed $a\in \mathbb {F}_{q}$. This completes the proof of a conjecture of Gupta et al. [‘Primitive element pairs with one prescribed trace over a finite field’, Finite Fields Appl.54 (2018), 1–14] concerning the analogous problem over an extension of arbitrary degree $n\ge 3$.
We give a corrected version of our previous lower bound on the value set of binomials (Canad. Math. Bull., v.63, 2020, 187–196). The other results are not affected.
In this paper, we investigate the distribution of the maximum of partial sums of families of $m$-periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of $\ell$-adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of $m$-periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp.
This paper explores the existence and distribution of primitive elements in finite field extensions with prescribed traces in several intermediate field extensions. Our main result provides an inequality-like condition to ensure the existence of such elements. We then derive concrete existence results for a special class of intermediate extensions.
Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $. In this very general context one of the most important results is the Pólya–Vinogradov bound
where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have
Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density
T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1; however, no bound of the form 0 < α ≤ ct or ct ≤ β < 1, valid for all t, is known. In this paper, we prove that ct > 1/2 – ε as soon as t contains sufficiently many blocks of 1s in its binary expansion. In the proof, we provide estimates for the moments of an associated probability distribution; this extends the study initiated by Emme and Prikhod’ko (2017) and pursued by Emme and Hubert (2018).
Let n be a positive integer and let $\mathbb{F} _{q^n}$ be the finite field with $q^n$ elements, where q is a prime power. We introduce a natural action of the projective semilinear group${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb{F} _q)$ on the set of monic irreducible polynomials over the finite field $\mathbb{F} _{q^n}$. Our main results provide information on the characterisation and number of fixed points.
Symplectic finite semifields can be used to construct nonlinear binary codes of Kerdock type (i.e., with the same parameters of the Kerdock codes, a subclass of Delsarte–Goethals codes). In this paper, we introduce nonbinary Delsarte–Goethals codes of parameters $(q^{m+1}\ ,\ q^{m(r+2)+2}\ ,\ {\frac{q-1}{q}(q^{m+1}-q^{\frac{m+1}{2}+r})})$ over a Galois field of order $q=2^l$, for all $0\le r\le\frac{m-1}{2}$, with m ≥ 3 odd, and show the connection of this construction to finite semifields.