To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article considers the effect of more than one quotient and improves a theorem of Tong which is a generalization of a theorem of Segre on asymmetric approximation.
The problem concerning the distribution of the fractional parts of the sequence ank (k an integer exceeding one) was first considered by Hardy and Littlewood [6] and Weyl [20] earlier this century. This work was developed, with the focus on small fractional parts of the sequence, by Vinogradov [17], Heilbronn [13] and Danicic [2] (see [1]). Recently Heath-Brown [12] has improved the unlocalized versions of these results for k ≥ 6 (a slightly stronger result than Heath-Brown's for K = 8 is given on page 24 of [8]. The method mentioned there can, after some numerical calculation, improve Heath-Brown's result for 8 ≤ k ≤ 20, but still stronger results have recently been obtained by Dr. T. D. Wooley). The cognate problem regarding the sequence apk, where p denotes a prime, has also received some attention. In this situation even the case k = 1 proves to be difficult (see [9] and [14]). The first results in this field were given by Vinogradov (see Chapter 11 of [19] for the case k = 1, [18] for k ≥ 2). For k = 2 the best result to date has been supplied by Ghosh [5], and for ≥, by Harman (Theorem 3 in [9], building on the work in [7] and [8]). In this paper we shall improve the known results for 2 ≤ k ≤ 12. For larger k, Theorem 3 in [8] is more efficient. The theorem we prove is as follows.
The study of the S-unit equation for algebraic numbers rests very heavily on Schmidt's Subspace Theorem. Here we prove an effective subspace theorem for the differential function field case, which should be valuable in the proof of results concerning the S-unit equation for function fields. Theorem 1 states that either has a given upper bound where are linearly independent linear forms in the polynomials with coefficients that are formal power series solutions about x = 0 of non-zero differential equations and where Orda denotes the order of vanishing about a regular (finite) point of functions ƒk, i: (k = 1, n; i = 1, n) or lies inside one of a finite number of proper subspaces of (K(x))n. The proof of the theorem is based on the wroskian methods and graded sub-rings of Picard-Vessiot extensions developed by D. V. Chudnovsky and G. V. Chudnovsky in their function field analogues of the Roth and Schmidt theorems. A brief discussion concerning the possibility of a subspace theorem for a product of valuations including the infinite one is also included.
John Conway's analysis in 1968 of the automorphism group of the Leech lattice and his discovery of three sporadic simple groups led to the immediate speculation that other Z-lattices might have interesting automorphism groups which give rise to (possibly new) finite simple groups. (The classification theorem for the finite simple groups has since told us that no new finite simple groups can arise in this or any other way.) For example in 1973, M. Broué and M. Enguehard constructed, in every dimension 2n, an even lattice (unimodular if n is odd) whose automorphism group is related to the simple Chevalley group of type Dn. This family of integral lattices received attention and acclaim in the subsequent literature. What escaped the attention of this literature, however, was the fact that these lattices had been discovered years earlier. Indeed in 1959, E. S. Barnes and G. E. Wall gave a uniform construction for a large class of positive definite Z-lattices in dimensions 2n which include those of Broué and Enguehard as special cases. The present article introduces an abstracted and generalized version of the construction of Barnes and Wall. In addition, there are some new observations about Barnes-Wall lattices. In particular, it is shown how to associate to each such lattice a continuous, piecewise linear graph in the plane from which all the important properties of the lattice, for example, its minimum, whether it is integral, unimodular, even, or perfect can be read off directly.
For a polynomial f(x) over a finite field Fq, denote the polynomial f(y)−f(x) by ϕf(x, y). The polynomial ϕf has frequently been used in questions on the values of f. The existence is proved here of a polynomial F over Fq of the form F = Lr, where L is an affine linearized polynomial over Fq, such that f = g(F) for some polynomial g and the part of ϕf which splits completely into linear factors over the algebraic closure of Fq is exactly φF. This illuminates an aspect of work of D. R. Hayes and Daqing Wan on the existence of permutation polynomials of even degree. Related results on value sets, including the exhibition of a class of permutation polynomials, are also mentioned.
We consider two unique products for a given p—adic integer x with leading coefficient 1, where anbn ∈ {0, 1,… p − 1}. It is shown that, for almost all such x relative to Haar measure on the p—adic integers, the sequences (an), (bn) are normal to base p, and have standard normal distribution functions.
We exhibit a sequence (un) which is not uniformly distributed modulo one even though for each fixed integer k ≥ 2 the sequence (kun) is u.d. (mod 1). Within the set of all such sequences, we characterize those with a well-behaved asymptotic distribution function. We exhibit a sequence (un) which is u.d. (mod 1) even though no subsequence of the form (ukn + j) is u.d. (mod 1) for any k ≥ 2. We prove that, if the subsequences (ukn) are u.d. (mod 1) for all squarefree k which are products of primes in a fixed set P, then (un) is u.d. (mod I) if the sum of the reciprocals of the primes in P diverges. We show that this result is the best possible of its type.
Let S be the surface of the unit sphere in three-dimensional euclidean space, and let WN=(x1x2, xN)be an N-tuple of points on S. We consider the product of mutual distances and, for the variable point x on S, the product of distance from x to the points of ωN. We obtain essentially best possible bounds for maxωN p(ΩN) and for minωN maxx∈sp(x, ωN).
We say that a positive integer d has property (A) if for all positive integers m there is an integer x, depending on m, such that, setting n = m + d, x lies between m and n and x is co-prime to mn. We show that infinitely many even d and infinitely many odd d have property (A) and that infinitely many even d do not have property (A). We conjecture and provide supporting evidence that all odd d have property (A).
Following A. R. Woods [3] we then describe conditions (Au) (for each u) asserting, for a given d, the existence of a chain of at most u + 2 integers, each co-prime to its neighbours, which start with m and increase, finishing at n = m + d. Property (A) is equivalent to condition (A1), and it is easily shown that property (Ai) implies property (Ai+1). Woods showed that for some u all d have property (Au), and we conjecture and provide supporting evidence that the least such u is 2.
This paper is concerned with non-trivial solvability in p–adic integers, for relatively large primes p, of a pair of additive equations of degree k > 1: where the coefficients a1,…, an, b1,…, bn are rational integers.
Our first theorem shows that the above equations have a non-trivial solution in p–adic integers if n > 4k and p > k6. The condition on n is best possible.
The later part of the paper obtains further information for the particular case k = 5. specifically we show that when k = 5 the above equations have a non-trivial solution in p–adic integers (a) for all p > 3061 if n ≥ 21; (b) for all p execpt p = 5, 11 if n ≥ 26.
In this article we establish an estimate for a sum over primes that is the analogue of an estimate for a sum over consecutive integers which has proved to be very useful in applications of exponential sums to problems in number theory.
This paper studies quintic residuacity of primes p of the form for which the expression for 4f modulo p given in the first volume of this journal becomes indeterminate, and replaces it by a much simpler expression.
Let L be a linear differential operator with rational coefficients such that 0 is not an irregular singularity of L and that for sufficiently many p's the equation Lv = 0 has no zero solution mod p. We show that if u is a formal power series whose coefficients are p-adic integers for almost all p and if Lu is rational, then u too is rational.
We employ the Dyson's Lemma of Esnault and Viehweg to obtain a new and sharp formulation of Roth's Theorem on the approximation of algebraic numbers by algebraic numbers and apply our arguments to yield a refinement of the Davenport-Roth result on the number of exceptions to Roth's inequality and a sharpening of the Cugiani-Mahler theorem. We improve on the order of magnitude of the results rather than just on the constants involved.
Let R, S be a partition of 2, 3,… so that rational powers fall in the same class. Let (λn) be any real sequence; we show that there exists a set N, of dimension 1, so that (x + λn) (n = 1,2, …) are normal to every base from R and to no base from S, for every x ∈ N.
Let $g\geqslant 2$. A real number is said to be $g$-normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\unicode[STIX]{x1D711}$ denote Euler’s totient function, let $\unicode[STIX]{x1D70E}$ be the sum-of-divisors function, and let $\unicode[STIX]{x1D706}$ be Carmichael’s lambda-function. We show that if $f$ is any function formed by composing $\unicode[STIX]{x1D711}$, $\unicode[STIX]{x1D70E}$, or $\unicode[STIX]{x1D706}$, then the number
obtained by concatenating the base $g$ digits of successive $f$-values is $g$-normal. We also prove the same result if the inputs $1,2,3,\ldots$ are replaced with the primes $2,3,5,\ldots$. The proof is an adaptation of a method introduced by Copeland and Erdős in 1946 to prove the 10-normality of $0.235711131719\cdots \,$.