To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a multiclass single-server queueing network as a model of a packet switching network. The rates packets are sent into this network are controlled by queues which act as congestion windows. By considering a sequence of congestion controls, we analyse a sequence of stationary queueing networks. In this asymptotic regime, the service capacity of the network remains constant and the sequence of congestion controllers act to exploit the network's capacity by increasing the number of packets within the network. We show that the stationary throughput of routes on this sequence of networks converges to an allocation that maximises aggregate utility subject to the network's capacity constraints. To perform this analysis, we require that our utility functions satisfy an exponential concavity condition. This family of utilities includes weighted α-fair utilities for α > 1.
A nanocomponent is a collection of atoms arranged to a specific design in order to achieve a desired function with an acceptable performance and reliability. The type of atoms, the manner in which they are arranged within the nanocomponent, and their interrelationship have a direct effect on the nanocomponent's reliability (survival) function. In this paper we propose models based on the notion of a copula that are used to describe the relationship between the atoms of a nanocomponent. Having defined these models, we go on to construct a ‘nanocomponent’ model in order to obtain the reliability function of a nanocomponent.
We consider a d-dimensional reflected fractional Brownian motion (RFBM) process on the positive orthant S = R+d, with drift r0 ∈ Rd and Hurst parameter H ∈ (½, 1). Under a natural stability condition on the drift vector r0 and reflection directions, we establish a return time result for the RFBM process Z; that is, for some δ, κ > 0, supx∈BEx[τB(δ)] < ∞, where B = {x ∈ S : |x| ≤ κ} and τB(δ) = inf{t ≥ δ : Z(t) ∈ B}. Similar results are known for reflected processes driven by standard Brownian motions, and our result can be viewed as their FBM counterpart. Our motivation for this study is that RFBM appears as a limiting workload process for fluid queueing network models fed by a large number of heavy-tailed ON/OFF sources in heavy traffic.
We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1–2/π)(ca2 + cs2), where λ is the arrival rate, and ca2 and cs2 are squared coefficients of variation of the interarrival and service times, respectively. As a consequence, the departures variability has a remarkable singularity in the case in which ϱ equals 1, in line with the BRAVO (balancing reduces asymptotic variance of outputs) effect which was previously encountered in finite-capacity birth-death queues. Under certain technical conditions, our result generalizes to multiserver queues, as well as to queues with more general arrival and service patterns. For the M/M/1 queue, we present an explicit expression of the variance of D(t) for any t.
In this paper, we define the geometric median for a probability measure on a Riemannian manifold, give its characterization and a natural condition to ensure its uniqueness. In order to compute the geometric median in practical cases, we also propose a subgradient algorithm and prove its convergence as well as estimating the error of approximation and the rate of convergence. The convergence property of this subgradient algorithm, which is a generalization of the classical Weiszfeld algorithm in Euclidean spaces to the context of Riemannian manifolds, also improves a recent result of P. T. Fletcher et al. [NeuroImage 45 (2009) S143–S152].
We investigate the final size distribution of the SIR (susceptible-infected-recovered) epidemic model in the critical regime. Using the integral representation of Martin-Löf (1998) for the hitting time of a Brownian motion with parabolic drift, we derive asymptotic expressions for the final size distribution that capture the effect of the initial number of infectives and the closeness of the reproduction number to zero. These asymptotics shed light on the bimodularity of the limiting density of the final size observed in Martin-Löf (1998). We also discuss the connection to the largest component in the Erdős-Rényi random graph, and, using this connection, find an integral expression of the Laplace transform of the normalized Brownian excursion area in terms of Airy functions.
We consider spatial stochastic models, which can be applied to, e.g. telecommunication networks with two hierarchy levels. In particular, we consider Cox processes XL and XH concentrated on the edge set T(1) of a random tessellation T, where the points XL,n and XH,n of XL and XH can describe the locations of low-level and high-level network components, respectively, and T(1) the underlying infrastructure of the network, such as road systems, railways, etc. Furthermore, each point XL,n of XL is marked with the shortest path along the edges of T to the nearest (in the Euclidean sense) point of XH. We investigate the typical shortest path length C* of the resulting marked point process, which is an important characteristic in, e.g. performance analysis and planning of telecommunication networks. In particular, we show that the distribution of C* converges to simple parametric limit distributions if a scaling factor κ converges to 0 or ∞. This can be used to approximate the density of C* by analytical formulae for a wide range of κ.
A dynamic model for a random network evolving in continuous time is defined, where new vertices are born and existing vertices may die. The fitness of a vertex is defined as the accumulated in-degree of the vertex and a new vertex is connected to an existing vertex with probability proportional to a function b of the fitness of the existing vertex. Furthermore, a vertex dies at a rate given by a function d of its fitness. Using results from the theory of general branching processes, an expression for the asymptotic empirical fitness distribution {pk} is derived and analyzed for a number of specific choices of b and d. When b(i) = i + α and d(i) = β, that is, linear preferential attachment for the newborn and random deaths, then pk ∼ k-(2+α). When b(i) = i + 1 and d(i) = β(i + 1), with β < 1, then pk ∼ (1 + β)−k, that is, if the death rate is also proportional to the fitness, then the power-law distribution is lost. Furthermore, when b(i) = i + 1 and d(i) = β(i + 1)γ, with β, γ < 1, then logpk ∼ -kγ, a stretched exponential distribution. The momentaneous in-degrees are also studied and simulations suggest that their behaviour is qualitatively similar to that of the fitnesses.
Some major companies have the policy of annually giving numerical scores to their employees according to their performance, firing those whose performance scores are below a given percentile of the scores of all employees, and then recruiting new employees to replace those who were fired. We introduce a probabilistic model to describe how this practice affects the quality of employee performance as measured over time by the annual scores. Let n be the number of years that the policy has been in effect, and let Fn(x) be the distribution function of the evaluation scores in year n. We show, under certain technical assumptions, that the sequence (Fn(x)) satisfies a particular nonlinear difference equation, and furnish estimates of the solution of the equation and expressions for the quantiles of Fn. The mathematical tools that are used include convex functions, difference equations, and extreme value theory for independent and identically distributed random variables.
We study first passage percolation (FPP) on the configuration model (CM) having power-law degrees with exponent τ ∈ [1, 2) and exponential edge weights. We derive the distributional limit of the minimal weight of a path between typical vertices in the network and the number of edges on the minimal-weight path, both of which can be computed in terms of the Poisson-Dirichlet distribution. We explicitly describe these limits via construction of infinite limiting objects describing the FPP problem in the densely connected core of the network. We consider two separate cases, the original CM, in which each edge, regardless of its multiplicity, receives an independent exponential weight, and the erased CM, for which there is an independent exponential weight between any pair of direct neighbors. While the results are qualitatively similar, surprisingly, the limiting random variables are quite different. Our results imply that the flow carrying properties of the network are markedly different from either the mean-field setting or the locally tree-like setting, which occurs as τ > 2, and for which the hopcount between typical vertices scales as log n. In our setting the hopcount is tight and has an explicit limiting distribution, showing that information can be transferred remarkably quickly between different vertices in the network. This efficiency has a down side in that such networks are remarkably fragile to directed attacks. These results continue a general program by the authors to obtain a complete picture of how random disorder changes the inherent geometry of various random network models; see Aldous and Bhamidi (2010), Bhamidi (2008), and Bhamidi, van der Hofstad and Hooghiemstra (2009).
Suppose that, under the action of gravity, liquid drains through the unit d-cube via a minimal-length network of channels constrained to pass through random sites and to flow with nonnegative component in one of the canonical orthogonal basis directions of Rd, d ≥ 2. The resulting network is a version of the so-called minimal directed spanning tree. We give laws of large numbers and convergence in distribution results on the large-sample asymptotic behaviour of the total power-weighted edge length of the network on uniform random points in (0, 1)d. The distributional results exhibit a weight-dependent phase transition between Gaussian and boundary-effect-derived distributions. These boundary contributions are characterized in terms of limits of the so-called on-line nearest-neighbour graph, a natural model of spatial network evolution, for which we also present some new results. Also, we give a convergence in distribution result for the length of the longest edge in the drainage network; when d = 2, the limit is expressed in terms of Dickman-type variables.
File-sharing networks are distributed systems used to disseminate files among nodes of a communication network. The general simple principle of these systems is that once a node has retrieved a file, it may become a server for this file. In this paper, the capacity of these networks is analyzed with a stochastic model when there is a constant flow of incoming requests for a given file. It is shown that the problem can be solved by analyzing the asymptotic behavior of a class of interacting branching processes. Several results of independent interest concerning these branching processes are derived and then used to study the file-sharing systems.
We take a new look at transient, or time-dependent Little laws for queueing systems. Through the use of Palm measures, we show that previous laws (see Bertsimas and Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law can be derived as well, which gives higher-moment expressions for very general types of queueing system; in particular, the laws hold for systems that allow customers to overtake one another. What is especially novel about our approach is the use of Palm measures that are induced by nonstationary point processes, as these measures are not commonly found in the queueing literature. This new higher-moment law is then used to provide expressions for all moments of the number of customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t > 0, for any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and without resampling) that are analogous to the special cases found in Abate and Whitt (1987c), (1988). These expressions are then used to derive a nice structural form for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt (1987a), (1987b)).
We analyze the notion of ‘reliability prediction’ by studying in detail a key property that is tacitly assumed to make reliability prediction possible. The analysis leads in turn to a special type of point process for which the connection of future to past can be explicitly displayed. In this type of process, the semi-renewal process, all finite-dimensional distributions are completely determined by the distribution of the time to the first event in the process. The theory provides a heretofore unappreciated unification of the two most commonly used reliability prediction models for maintained systems, namely, the renewal and revival processes. We show that familiar results from renewal theory extend and generalize to semi-renewal processes.
PageRank with personalization is used in Web search as an importance measure for Web documents. The goal of this paper is to characterize the tail behavior of the PageRank distribution in the Web and other complex networks characterized by power laws. To this end, we model the PageRank as a solution of a stochastic equation where the Ris are distributed as R. This equation is inspired by the original definition of the PageRank. In particular, N models the number of incoming links to a page, and B stays for the user preference. Assuming that N or B are heavy tailed, we employ the theory of regular variation to obtain the asymptotic behavior of R under quite general assumptions on the involved random variables. Our theoretical predictions show good agreement with experimental data.
We consider a system with Poisson arrivals and independent and identically distributed service times, where requests in the system are served according to the state-dependent (Cohen's generalized) processor-sharing discipline, where each request receives a service capacity that depends on the actual number of requests in the system. For this system, we derive expressions as well as tight insensitive upper bounds for the moments of the conditional sojourn time of a request with given required service time. The bounds generalize and extend corresponding results, recently given for the single-server processor-sharing system in Cheung et al. (2006) and for the state-dependent processor-sharing system with exponential service times by the authors (2008). Analogous results hold for the waiting times. Numerical examples for the M/M/m-PS and M/D/m-PS systems illustrate the given bounds.
We consider a stochastic control model driven by a fractional Brownian motion. This model is a formal approximation to a queueing network with an ON-OFF input process. We study stochastic control problems associated with the long-run average cost, the infinite-horizon discounted cost, and the finite-horizon cost. In addition, we find a solution to a constrained minimization problem as an application of our solution to the long-run average cost problem. We also establish Abelian limit relationships among the value functions of the above control problems.
Measures of divergence or discrepancy are used either to measure mutual information concerning two variables or to construct model selection criteria. In this paper we focus on divergence measures that are based on a class of measures known as Csiszár's divergence measures. In particular, we propose a measure of divergence between residual lives of two items that have both survived up to some time t as well as a measure of divergence between past lives, both based on Csiszár's class of measures. Furthermore, we derive properties of these measures and provide examples based on the Cox model and frailty or transformation model.
In this note we deal with the allocation of independent and identical active redundancies to a k-out-of-n system with the usual stochastic order among its independent components. The optimal policy is proved both to assign more redundancies to the weaker component and to majorize all other policies. This improves the corresponding one in Hu and Wang (2009) and serves as a nice supplement to that in Misra, Dhariyal and Gupta (2009) as well.
In 1990, Ramaswami proved that, given a Markov renewal process of M/G/1 type, it is possible to construct a Markov renewal process of GI/M/1 type such that the matrix transforms G(z, s) for the M/G/1-type process and R(z, s) for the GI/M/1-type process satisfy a duality relationship. In his 1996 PhD thesis, Bright used time reversal arguments to show that it is possible to define a different dual for positive-recurrent and transient processes of M/G/1 type and GI/M/1 type. Here we compare the properties of the Ramaswami and Bright dual processes and show that the Bright dual has desirable properties that can be exploited in the design of algorithms for the analysis of Markov chains of GI/M/1 type and M/G/1 type.