We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Toeplitz operators on the space of all real analytic functions on the real line and the space of all holomorphic functions on finitely connected domains in the complex plane. In both cases, we show that the space of all Toeplitz operators is isomorphic, when equipped with the topology of uniform convergence on bounded sets, with the symbol algebra. This is surprising in view of our previous results, since we showed that the symbol map is not continuous in this topology on the algebra generated by all Toeplitz operators. We also show that in the case of the Fréchet space of all holomorphic functions on a finitely connected domain in the complex plane, the commutator ideal is dense in the algebra generated by all Toeplitz operators in the topology of uniform convergence on bounded sets.
The loop space of a string manifold supports an infinite-dimensional Fock space bundle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on loop space appears in the description of two-dimensional sigma models as the bundle of states over the configuration space of the superstring. We construct a product on this bundle that covers the fusion of loops, i.e. the merging of two loops along a common segment. For this purpose, we exhibit it as a bundle of bimodules over a certain von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion of von Neumann bimodules. Our main technique is to establish novel relations between string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product on the spinor bundle on loop space was proposed by Stolz and Teichner as part of a programme to explore the relation between generalized cohomology theories, functorial field theories, and index theory. It is related to the pair of pants worldsheet of the superstring, to the extension of the corresponding smooth functorial field theory down to the point, and to a higher-categorical bundle on the underlying string manifold, the stringor bundle.
We study a class of left-invertible operators which we call weakly concave operators. It includes the class of concave operators and some subclasses of expansive strict $m$-isometries with $m > 2$. We prove a Wold-type decomposition for weakly concave operators. We also obtain a Berger–Shaw-type theorem for analytic finitely cyclic weakly concave operators. The proofs of these results rely heavily on a spectral dichotomy for left-invertible operators. It provides a fairly close relationship, written in terms of the reciprocal automorphism of the Riemann sphere, between the spectra of a left-invertible operator and any of its left inverses. We further place the class of weakly concave operators, as the term $\mathcal {A}_1$, in the chain $\mathcal {A}_0 \subseteq \mathcal {A}_1 \subseteq \ldots \subseteq \mathcal {A}_{\infty }$ of collections of left-invertible operators. We show that most of the aforementioned results can be proved for members of these classes. Subtleties arise depending on whether the index $k$ of the class $\mathcal {A}_k$ is finite or not. In particular, a Berger–Shaw-type theorem fails to be true for members of $\mathcal {A}_{\infty }$. This discrepancy is better revealed in the context of $C^*$- and $W^*$-algebras.
In this paper, we will show that the unitary equivalence of two multiplication operators on the Bergman spaces on polygons depends on the geometry of the polygon.
Our first result is a noncommutative form of the Jessen-Marcinkiewicz-Zygmund theorem for the maximal limit of multiparametric martingales or ergodic means. It implies bilateral almost uniform convergence (a noncommutative analogue of almost everywhere convergence) with initial data in the expected Orlicz spaces. A key ingredient is the introduction of the
$L_p$
-norm of the
$\limsup $
of a sequence of operators as a localized version of a
$\ell _\infty /c_0$
-valued
$L_p$
-space. In particular, our main result gives a strong
$L_1$
-estimate for the
$\limsup $
—as opposed to the usual weak
$L_{1,\infty }$
-estimate for the
$\mathop {\mathrm {sup}}\limits $
—with interesting consequences for the free group algebra.
Let
$\mathcal{L} \mathbf{F} _2$
denote the free group algebra with
$2$
generators, and consider the free Poisson semigroup generated by the usual length function. It is an open problem to determine the largest class inside
$L_1(\mathcal{L} \mathbf{F} _2)$
for which the free Poisson semigroup converges to the initial data. Currently, the best known result is
$L \log ^2 L(\mathcal{L} \mathbf{F} _2)$
. We improve this result by adding to it the operators in
$L_1(\mathcal{L} \mathbf{F} _2)$
spanned by words without signs changes. Contrary to other related results in the literature, this set grows exponentially with length. The proof relies on our estimates for the noncommutative
$\limsup $
together with new transference techniques.
We also establish a noncommutative form of Córdoba/Feffermann/Guzmán inequality for the strong maximal: more precisely, a weak
$(\Phi ,\Phi )$
inequality—as opposed to weak
$(\Phi ,1)$
—for noncommutative multiparametric martingales and
$\Phi (s) = s (1 + \log _+ s)^{2 + \varepsilon }$
. This logarithmic power is an
$\varepsilon $
-perturbation of the expected optimal one. The proof combines a refinement of Cuculescu’s construction with a quantum probabilistic interpretation of M. de Guzmán’s original argument. The commutative form of our argument gives the simplest known proof of this classical inequality. A few interesting consequences are derived for Cuculescu’s projections.
The joint Brown measure and joint Haagerup–Schultz projections for tuples of commuting operators in a von Neumann algebra equipped with a faithful tracial state are investigated, and several natural properties are proved for these. It is shown that the support of the joint Brown measure is contained in the Taylor joint spectrum of the tuple, and also in the ostensibly smaller left Harte spectrum. A simultaneous upper triangularization result for finite commuting tuples is proved, and the joint Brown measure and joint Haagerup–Schultz projections are shown to behave well under the Arens multivariate holomorphic functional calculus of such a commuting tuple.
In this paper we generalize the notion of the C-numerical range of a matrix to operators in arbitrary tracial von Neumann algebras. For each self-adjoint operator C, the C-numerical range of such an operator is defined; it is a compact, convex subset of ℂ. We explicitly describe the C-numerical ranges of several operators and classes of operators.
We examine a class of ergodic transformations on a probability measure space $(X,{\it\mu})$ and show that they extend to representations of ${\mathcal{B}}(L^{2}(X,{\it\mu}))$ that are both implemented by a Cuntz family and ergodic. This class contains several known examples, which are unified in our work. During the analysis of the existence and uniqueness of this Cuntz family, we find several results of independent interest. Most notably, we prove a decomposition of $X$ for $N$-to-one local homeomorphisms that is connected to the orthonormal bases of certain Hilbert modules.
We prove that if two normed-algebra-valued cosine families indexed by a single Abelian group, of which one is bounded and comprised solely of scalar elements of the underlying algebra, differ in norm by less than $1$ uniformly in the parametrising index, then these families coincide.
We describe some aspects of spectral theory that involve algebraic considerations but need no analysis. Some of the important applications of the results are to the algebra of n×n matrices with entries that are polynomials or more general analytic functions.
In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements ${{H}_{0}}$ and $H$ in the algebra and relate it to the concept of the de la Harpe–Skandalis homotopy invariant determinant associated with piecewise ${{C}^{1}}$-paths of operators joining ${{H}_{0}}$ and $H$. We obtain an analog of Krein's formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman–Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier–Fuglede–Kadison differentiation formula.
We examine positive semigroups acting on Banach lattices and operator algebras. In the lattice framework we characterize strict positivity and strict ordering of holomorphic semigroups by irreducibility criteria. In the algebraic setting we derive ergodic criteria for irreducibility and discuss various aspects of strict positivity. Finally we examine invariant states of a C*-dynamical system in which the automorphism group is replaced by a strongly positive semigroup. We demonstrate that ergodic states are characterized by a cluster property despite the absence of a covariant implementation law for the semigroup.
Let B(H) be the Banach algebra of all (bounded linear) operators on an infinite-dimensional separable complex Hilbert space H and let be a bounded sequence of positive real numbers. For a given injective operator A in B(H) and a non-zero vector f in H, we put We define a weighted shift Tw with the weight sequence on the Hilbert space 12 of all square-summable complex sequences by . The main object of this paper is to characterize the invariant subspace lattice of Tw under various nice conditions on the operator A and the sequence .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.