To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is devoted to the study of the local existence, uniqueness, regularity, and continuous dependence of solutions to a logistic equation with memory in the Bessel potential spaces.
We prove continuity in generalized parabolic Morrey spaces of sublinear operators generated by the parabolic Calderón—Zygmund operator and by the commutator of this operator with bounded mean oscillation (BMO) functions. As a consequence, we obtain a global -regularity result for the Cauchy—Dirichlet problem for linear uniformly parabolic equations with vanishing mean oscillation (VMO) coefficients.
In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrödinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.
In this article we study the parabolic system of equations which is closely related to a multitype branching Brownian motion. Particular attention is paid to the monotone traveling wave solutions of this system. Provided with some moment conditions, we show the existence, uniqueness, and asymptotic behaviors of such waves with speed greater than or equal to a critical value c̲ and nonexistence of such waves with speed smaller than c̲.
We analyse the behaviour of supercritical super-Brownian motion with a barrier through the pathwise backbone embedding of Berestycki, Kyprianou and Murillo-Salas (2011). In particular, by considering existing results for branching Brownian motion due to Harris and Kyprianou (2006) and Maillard (2011), we obtain, with relative ease, conclusions regarding the growth in the right-most point in the support, analytical properties of the associated one-sided Fisher-Kolmogorov-Petrovskii-Piscounov wave equation, as well as the distribution of mass on the exit measure associated with the barrier.
Let $\varphi _0$ and $\varphi _1$ be regular functions on the boundary $\partial D$ of the unit disk $D$ in $\mathbb {R}^2$, such that $\int _{0}^{2\pi }\varphi _1\,d\theta =0$ and $\int _{0}^{2\pi }\sin \theta (\varphi _1-\varphi _0)\,d\theta =0$. It is proved that there exist a linear second-order uniformly elliptic operator $L$ in divergence form with bounded measurable coefficients and a function $u$ in $W^{1,p}(D)$, $1 \lt p \lt 2$, such that $Lu=0$ in $D$ and with $u|_{\partial D}= \varphi _0$ and the conormal derivative $\partial u/\partial N|_{\partial D}=\varphi _1$.
We prove estimates for the partial derivatives of the solution to a time-fractional diffusion equation posed over a bounded spatial domain. Such estimates are needed for the analysis of effective numerical methods, particularly since the solution is typically less regular than in the familiar case of classical diffusion.
We study singularities of solutions of the heat equation, that are not necessarily isolated but occur only in a single characteristic hyperplane. We prove a decomposition theorem for certain solutions on D+ = D ∩ (Rn × ]0. ∞[), for a suitable open set D, with singularities at compact subset K of Rn × {0}, in terms of Gauss-Weierstrass integrals. We use this to prove a representation theorem for certain solutions on D+, with singularities at K, as the sums of potentials and Dirichlet solutions. We also give conditions under which K is removable for solutions on D∖K.
Let u be a solution of the heat equation which can be written as the difference of two non-negative solutions, and let v be a non-negative solution. A study is made of the behaviour of u(x, t)/v(x, t) as t → 0+. The methods are based on the Gauss-Weierstrass integral representation of solutions on Rn × ]0, a[ and results on the relative differentiation of measures, which are employed in a novel way to obtain several domination, non-negativity, uniqueness and representation theorems.
The aim of this article is to review the progress made in the last few years in the representation theory of solutions of parabolic systems in the sense of Petrowskii.
We establish a method of constructing kernels of Bergman operators for second-order linear partial differential equations in two independent variables, and use the method for obtaining a new class of Bergman kernels, which we call modified class E kernels since they include certain class E kernals. They also include other kernels which are suitable for global representations of solutions (whereas Bergman operators generally yield only local representations).
Both S. Bergman [1] and I. N. Vekua [13] have constructed integral operators which map ordered pairs of analytic functions of one complex variable onto solutions of fourth order elliptic equations in two independent variables. Such operators play an important role in the investigation of the analytic properties of solutions to higher order elliptic equations and in the approximation of solutions to boundary value problems associated with these equations. Unfortunately, little progress has been made in developing an analogous theory for elliptic equations in more than two independent variables. Recently, however, Colton and Gilbert [7] constructed integral operators for a class of fourth order elliptic equations with spherically symmetric coefficients in p + 2 (p ≥ 0) independent variables, and at present Dean Kukral [11], a student of R. P. Gilbert, is in the process of trying to extend some recent results of Colton [3, 4, 5] for second order equations in three independent variables to the fourth order case.