To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We make some remarks on the Euler–Lagrange equation of energy functional $I(u)=\int _\Omega f(\det Du)\,{\rm d}x,$ where $f\in C^1(\mathbb {R}).$ For certain weak solutions $u$ we show that the function $f'(\det Du)$ must be a constant over the domain $\Omega$ and thus, when $f$ is convex, all such solutions are an energy minimizer of $I(u).$ However, other weak solutions exist such that $f'(\det Du)$ is not constant on $\Omega.$ We also prove some results concerning the homeomorphism solutions, non-quasimonotonicity and radial solutions, and finally we prove some stability results and discuss some related questions concerning certain approximate solutions in the 2-Dimensional cases.
For a perturbed generalized Korteweg–de Vries equation with a distributed delay, we prove the existence of both periodic and solitary waves by using the geometric singular perturbation theory and the Melnikov method. We further obtain monotonicity and boundedness of the speed of the periodic wave with respect to the total energy of the unperturbed system. Finally, we establish a relation between the wave speed and the wavelength.
In this paper, we prove some weighted sharp inequalities of Trudinger–Moser type. The weights considered here have a logarithmic growth. These inequalities are completely new and are established in some new Sobolev spaces where the norm is a mixture of the norm of the gradient in two different Lebesgue spaces. This fact allowed us to prove a very interesting result of sharpness for the case of doubly exponential growth at infinity. Some improvements of these inequalities for the weakly convergent sequences are also proved using a version of the Concentration-Compactness principle of P.L. Lions. Taking profit of these inequalities, we treat in the last part of this work some elliptic quasilinear equation involving the weighted $(N,q)-$Laplacian operator where $1 < q < N$ and a nonlinearities enjoying a new type of exponential growth condition at infinity.
We study the existence of large solutions for nonlocal Dirichlet problems posed on a bounded, smooth domain, associated with fully nonlinear elliptic equations of order $2\,s$, with $s\in (1/2,\,1)$, and a coercive gradient term with subcritical power $0< p<2\,s$. Due to the nonlocal nature of the diffusion, new blow-up phenomena arise within the range $0< p<2\,s$, involving a continuum family of solutions and/or solutions blowing-up to $-\infty$ on the boundary. This is in striking difference with the local case studied by Lasry–Lions for the subquadratic case $1< p<2$.
We consider the non-linear Schrödinger equation(Pμ)
\begin{equation*}\begin{array}{lc}-\Delta u + V(x) u = \mu f(u) + |u|^{2^*-2}u, &\end{array}\end{equation*}
in $\mathbb{R}^N$, $N\geq3$, where V changes sign and $f(s)/s$, s ≠ 0, is bounded, with V non-periodic in x. The existence of a solution is established employing spectral theory, a general linking theorem due to [12] and interaction between translated solutions of the problem at infinity with some qualitative properties of them.
The dynamics of interfaces in slow diffusion equations with strong absorption are studied. Asymptotic methods are used to give descriptions of the behaviour local to a comprehensive range of possible singular events that can occur in any evolution. These events are: when an interface changes its direction of propagation (reversing and anti-reversing), when an interface detaches from an absorbing obstacle (detaching), when two interfaces are formed by film rupture (touchdown) and when the solution undergoes extinction. Our account of extinction and self-similar reversing and anti-reversing is built upon previous work; results on non-self-similar reversing and anti-reversing and on the various types of detachment and touchdown are developed from scratch. In all cases, verification of the asymptotic results against numerical solutions to the full PDE is provided. Self-similar solutions, both of the full equation and of its asymptotic limits, play a central role in the analysis.
In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-th fractional truncated Laplacian or the $k$-th fractional eigenvalue which are fully nonlinear integral operators whose nonlocality is somehow $k$-dimensional.
We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.
The main objective of this paper is to answer the questions posed by Robinson and Sadowski [22, p. 505, Commun. Math. Phys., 2010] for the Navier–Stokes equations. Firstly, we prove that the upper box dimension of the potential singular points set $\mathcal {S}$ of suitable weak solution $u$ belonging to $L^{q}(0,T;L^{p}(\mathbb {R}^{3}))$ for $1\leq \frac {2}{q}+\frac {3}{p}\leq \frac 32$ with $2\leq q<\infty$ and $2< p<\infty$ is at most $\max \{p,q\}(\frac {2}{q}+\frac {3}{p}-1)$ in this system. Secondly, it is shown that $1-2s$ dimension Hausdorff measure of potential singular points set of suitable weak solutions satisfying $u\in L^{2}(0,T;\dot {H}^{s+1}(\mathbb {R}^{3}))$ for $0\leq s\leq \frac 12$ is zero, whose proof relies on Caffarelli–Silvestre's extension. Inspired by Barker–Wang's recent work [1], this further allows us to discuss the Hausdorff dimension of potential singular points set of suitable weak solutions if the gradient of the velocity is under some supercritical regularity.
New classes of conditionally integrable systems of nonlinear reaction–diffusion equations are introduced. They are obtained by extending a well-known nonclassical symmetry of a scalar partial differential equation to a vector equation. New exact solutions of nonlinear predator–prey systems with cross-diffusion are constructed. Infinite dimensional classes of exact solutions are made available for such nonlinear systems. Some of these solutions decay towards extinction and some oscillate or spiral around an interior fixed point. It is shown that the conditionally integrable systems are closely related to the standard diffusive Lotka–Volterra system, but they have additional features.
Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.
We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial to find a compromise between a very detailed description of many possible physical phenomena and a necessary simplicity needed for a fast and robust computational approach. We present the model, a numerical approach, simulation for single tubes and also for realistic network settings. In addition, we optimise the power output with respect to the operational parameters.
The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through $\overline {\partial }$-derivatives. To extend the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE techniques.
We consider a class of generalized nonlocal $p$-Laplacian equations. We find some proper structural conditions to establish a version of nonlocal Harnack inequalities of weak solutions to such nonlocal problems by using the expansion of positivity and energy estimates.
Steel corrosion plays a central role in different technological fields. In this article, we consider a simple case of a corrosion phenomenon which describes a pure iron dissolution in sodium chloride. This article is devoted to prove rigorously that under rather general hypotheses on the initial data, the solution of this iron dissolution model converges to a self-similar profile as $t\rightarrow +\infty$. We will do so for an equivalent formulation as presented in the book of Avner Friedman about parabolic equations (Friedman (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ.). In order to prove the convergence result, we apply a comparison principle together with suitable upper and lower solutions.
In this paper, we consider the problem $-\Delta u =-u^{-\beta }\chi _{\{u>0\}} + f(u)$ in $\Omega$ with $u=0$ on $\partial \Omega$, where $0<\beta <1$ and $\Omega$ is a smooth bounded domain in $\mathbb {R}^{N}$, $N\geq 2$. We are able to solve this problem provided $f$ has subcritical growth and satisfy certain hypothesis. We also consider this problem with $f(s)=\lambda s+s^{\frac {N+2}{N-2}}$ and $N\geq 3$. In this case, we are able to obtain a solution for large values of $\lambda$. We replace the singular function $u^{-\beta }$ by a function $g_\epsilon (u)$ which pointwisely converges to $u^{-\beta }$ as $\epsilon \rightarrow 0$. The corresponding energy functional to the perturbed equation $-\Delta u + g_\epsilon (u) = f(u)$ has a critical point $u_\epsilon$ in $H_0^{1}(\Omega )$, which converges to a non-trivial non-negative solution of the original problem as $\epsilon \rightarrow 0$.
In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels
\begin{equation*} u_{t} - \Delta u_t - \Delta u - \int_0^\infty k^{\prime}_{t}(s) \Delta u(t-s) ds + f( u) = g \end{equation*}
on a bounded domain $\Omega \subset \mathbb{R}^N,\, N\geq 3$. Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors $\mathcal{A}=\{A_t\}_{t\in\mathbb{R}}$ in $H_0^1(\Omega)\times L^2_{\mu_t}(\mathbb{R}^+,H_0^1(\Omega))$. Finally, we prove that the asymptotic dynamics of our problem, when $k_t$ approaches a multiple $m\delta_0$ of the Dirac mass at zero as $t\to \infty$, is close to the one of its formal limit
\begin{equation*}u_{t} - \Delta u_{t} - (1+m)\Delta u + f( u) = g. \end{equation*}
The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel $k_t(\!\cdot\!)$ depends on time, which allows for instance to describe the dynamics of aging materials.
Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.
A linear growth-diffusion equation is studied in a time-dependent interval whose location and length both vary. We prove conditions on the boundary motion for which the solution can be found in exact form and derive the explicit expression in each case. Next, we prove the precise behaviour near the boundary in a ‘critical’ case: when the endpoints of the interval move in such a way that near the boundary there is neither exponential growth nor decay, but the solution behaves like a power law with respect to time. The proof uses a subsolution based on the Airy function with argument depending on both space and time. Interesting links are observed between this result and Bramson's logarithmic term in the nonlinear FKPP equation on the real line. Each of the main theorems is extended to higher dimensions, with a corresponding result on a ball with a time-dependent radius.
We discuss practical methods for computing the space of solutions to an arbitrary homogeneous linear system of partial differential equations with constant coefficients. These rest on the Fundamental Principle of Ehrenpreis–Palamodov from the 1960s. We develop this further using recent advances in computational commutative algebra.