To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The equation of state (EOS) plays a crucial role in hyperbolic conservation laws for the compressible fluid. Whereas, the solid constitutive model with elastic-plastic phase transition makes the analysis of the solid Riemann problem more difficult. In this paper, one-dimensional elastic-perfectly plastic solid Riemann problem is investigated and its exact Riemann solver is proposed. Different from previous works treating the elastic and plastic phases integrally, we resolve the elastic wave and plastic wave separately to understand the complicate nonlinear waves within the solid and then assemble them together to construct the exact Riemann solver for the elastic-perfectly plastic solid. After that, the exact solid Riemann solver is associated with the fluid Riemann solver to decouple the fluid-solid multi-material interaction. Numerical tests, including gas-solid, water-solid high-speed impact problems are simulated by utilizing the modified ghost fluid method (MGFM).
We consider a scalar conservation law with zero-flux boundary conditions imposed on the boundary of a rectangular multidimensional domain. We study monotone schemes applied to this problem. For the Godunov version of the scheme, we simply set the boundary flux equal to zero. For other monotone schemes, we additionally apply a simple modification to the numerical flux. We show that the approximate solutions produced by these schemes converge to the unique entropy solution, in the sense of [7], of the conservation law. Our convergence result relies on a BV bound on the approximate numerical solution. In addition, we show that a certain functional that is closely related to the total variation is nonincreasing from one time level to the next. We extend our scheme to handle degenerate convection-diffusion equations and for the one-dimensional case we prove convergence to the unique entropy solution.
Scale similarity is found in many natural phenomena in the universe, from fluid dynamics to astrophysics. In large eddy simulations of turbulent flows, some sub-grid scale (SGS) models are based on scale similarity. The earliest scale similarity SGS model was developed by Bardina et al., which produced SGS stresses with good correlation to the true stresses. In the present study, we perform a mathematical analysis of scale similarity. The analysis has revealed that the ratio of the resolved stress to the SGS stress is γ2, where γ is the ratio of the second filter width to the first filter width, under the assumption of small filter width. The implications of this analysis are discussed in the context of large eddy simulation.
Nanosecond (ns) pulsed dielectric barrier discharge (DBD) actuator in a laminar flat plate boundary layer is investigated numerically in an attempt to gain some new insights into the understanding of ns DBD actuation mechanism. Special emphasis is put on the examination, separation and comparison of behaviors of discharge induced micro shock wave and residual heat as well as on the investigation of response of external flow to the two effects. The shock wave is found to introduce highly transient, localized perturbation to the flow and be able to significantly alter the flow pattern shortly after its initiation. The main flow tends to quickly recover to close to its undisturbed state due to the transient nature of perturbation. However, with the shock decay and final disappearance, another perturbation source in the vicinity of discharge region, which contains contribution from both residual heat and shock, becomes increasingly pronounced and eventually develops into a perturbation wave train in the boundary layer. The perturbation is relatively weak and may not be a Tollmien-Schlichting (TS) wave and not trigger the laminar-turbulent transition of boundary layer. Instead, it is more likely to manipulate the flow stability to achieve the strong control authority of this kind of actuation in the case of flow separation control. In addition, a parametric study over the different electrical and hydrodynamic parameters is also conducted.
In this paper, we extend using the Runge-Kutta discontinuous Galerkin method together with the front tracking method to simulate the compressible two-medium flow on unstructured meshes. A Riemann problem is constructed in the normal direction in the material interfacial region, with the goal of obtaining a compact, robust and efficient procedure to track the explicit sharp interface precisely. Extensive numerical tests including the gas-gas and gas-liquid flows are provided to show the proposed methodologies possess the capability of enhancing the resolutions nearby the discontinuities inside of the single medium flow and the interfacial vicinities of the two-medium flow in many occasions.
High fidelity modeling and simulation of moderately dense sprays at relatively low cost is still a major challenge for many applications. For that purpose, we introduce a new multi-fluid model based on a two-size moment formalism in sections, which are size intervals of discretization. It is derived from a Boltzmann type equation taking into account drag, evaporation and coalescence, which are representative of the complex terms that arise in multi-physics environments. The closure of the model comes from a reconstruction of the distribution. A piecewise affine reconstruction in size is thoroughly analyzed in terms of stability and accuracy, a key point for a high-fidelity and reliable description of the spray. Robust and accurate numerical methods are then developed, ensuring the realizability of the moments. The model and method are proven to describe the spray with a high accuracy in size and size-conditioned variables, resorting to a lower number of sections compared to one size moment methods. Moreover, robustness is ensured with efficient and tractable algorithms despite the numerous couplings and various algebra thanks to a tailored overall strategy. This strategy is successfully tested on a difficult 2D unsteady case, which proves the efficiency of the modeling and numerical choices.
We propose and analyse finite volume Godunov type methods based on discontinuous flux for a 2×2 system of non-linear partial differential equations proposed by Hadeler and Kuttler to model the dynamics of growing sandpiles generated by a vertical source on a flat bounded rectangular table. The problem considered here is the so-called partially open table problem where sand is blocked by a wall (of infinite height) on some part of the boundary of the table. The novelty here is the corresponding modification of boundary conditions for the standing and the rolling layers and generalization of the techniques of the well-balancedness proposed in [1]. Presence of walls may lead to unbounded or discontinuous surface flow density at equilibrium resulting in solutions with singularities propagating from the extreme points of the walls. A scheme has been proposed to approximate efficiently the Hamiltonians with the coefficients which can be unbounded and discontinuous. Numerical experiments are presented to illustrate that the proposed schemes detect these singularities in the equilibrium solutions efficiently and comparisons are made with the previously studied finite difference and Semi-Lagrangian approaches by Finzi Vita et al.
The modified ghost fluid method (MGFM), due to its reasonable treatment for ghost fluid state, has been shown to be robust and efficient when applied to compressible multi-medium flows. Other feasible definitions of the ghost fluid state, however, have yet to be systematically presented. By analyzing all possible wave structures and relations for a multi-medium Riemann problem, we derive all the conditions to define the ghost fluid state. Under these conditions, the solution in the real fluid region can be obtained exactly, regardless of the wave pattern in the ghost fluid region. According to the analysis herein, a practical ghost fluid method (PGFM) is proposed to simulate compressible multi-medium flows. In contrast with the MGFM where three degrees of freedomat the interface are required to define the ghost fluid state, only one degree of freedomis required in this treatment. However, when these methods proved correct in theory are used in computations for the multi-medium Riemann problem, numerical errors at the material interface may be inevitable. We show that these errors are mainly induced by the single-medium numerical scheme in essence, rather than the ghost fluid method itself. Equipped with some density-correction techniques, the PGFM is found to be able to suppress these unphysical solutions dramatically.
Extended hydrodynamic models for carrier transport are derived from the semiconductor Boltzmann equation with relaxation time approximation of the scattering term, by using the globally hyperbolic moment method and the moment-dependent relaxation time. Incorporating the microscopic relaxation time and the applied voltage bias, a formula is proposed to determine the relaxation time for each moment equation, which sets different relaxation rates for different moments such that higher moments damp faster. The resulting models would give more satisfactory results of macroscopic quantities of interest with a high-order convergence to those of the underlying Boltzmann equation as the involved moments increase, in comparison to the corresponding moment models using a single relaxation time. In order to simulate the steady states efficiently, a multigrid solver is developed for the derived moment models. Numerical simulations of an n+-n-n+ silicon diode are carried out to demonstrate the validation of the presented moment models, and the robustness and efficiency of the designed multigrid solver.
We consider first-order hyperbolic systems on an interval with dynamic boundary conditions. These systems occur when the ordinary differential equation dynamics on the boundary interact with the waves in the interior. The well-posedness for linear systems is established using an abstract Friedrichs theorem. Due to the limited regularity of the coefficients, we need to introduce the appropriate space of test functions for the weak formulation. It is shown that the weak solutions exhibit a hidden regularity at the boundary as well as at interior points. As a consequence, the dynamics of the boundary components satisfy an additional regularity. Neither result can be achieved from standard semigroup methods. Nevertheless, we show that our weak solutions and the semigroup solutions coincide. For illustration, we give three particular physical examples that fit into our framework.
We present an efficient and robust method for stress wave propagation problems (second order hyperbolic systems) having discontinuities directly in their second order form. Due to the numerical dispersion around discontinuities and lack of the inherent dissipation in hyperbolic systems, proper simulation of such problems are challenging. The proposed idea is to denoise spurious oscillations by a post-processing stage from solutions obtained from higher-order grid-based methods (e.g., high-order collocation or finite-difference schemes). The denoising is done so that the solutions remain higher-order (here, second order) around discontinuities and are still free from spurious oscillations. For this purpose, improved Tikhonov regularization approach is advised. This means to let data themselves select proper denoised solutions (since there is no pre-assumptions about regularized results). The improved approach can directly be done on uniform or non-uniform sampled data in a way that the regularized results maintenance continuous derivatives up to some desired order. It is shown how to improve the smoothing method so that it remains conservative and has local estimating feature. To confirm effectiveness of the proposed approach, finally, some one and two dimensional examples will be provided. It will be shown how both the numerical (artificial) dispersion and dissipation can be controlled around discontinuous solutions and stochastic-like results.
We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M, i.e. such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1. The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and efficient semi implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.
In this paper, a high-order curved mesh generation method for Discontinuous Galerkin methods is introduced. First, a regular mesh is generated. Second, the solid surface is re-constructed using cubic polynomial. Third, the elastic governing equations are solved using high-order finite element method to provide a fully or partly curved grid. Numerical tests indicate that the intersection between element boundaries can be avoided by carefully defining the elasticity modulus.
We discuss the solvability of the periodic Navier problem for the plate equation with forced vibrations xtt(t, y)+Δ2x(t, y)+l(t, y, x(t, y)) = 0 in higher dimensions with side lengths being irrational numbers and the nonlinearity being superlinear. We also derive a new dual variational method.
We propose an entropy stable high-resolution finite volume scheme to approximate systems of two-dimensional symmetrizable conservation laws on unstructured grids. In particular we consider Euler equations governing compressible flows. The scheme is constructed using a combination of entropy conservative fluxes and entropy-stable numerical dissipation operators. High resolution is achieved based on a linear reconstruction procedure satisfying a suitable sign property that helps to maintain entropy stability. The proposed scheme is demonstrated to robustly approximate complex flow features by a series of benchmark numerical experiments.
The first-order cross correlation and corresponding applications in the passive imaging are deeply studied by Garnier and Papanicolaou in their pioneer works. In this paper, the results of the first-order cross correlation are generalized to the second-order cross correlation. The second-order cross correlation is proven to be a statistically stable quantity, with respective to the random ambient noise sources. Specially, with proper time scales, the stochastic fluctuation for the second-order cross correlation converges much faster than the first-order one. Indeed, the convergent rate is of order , with 0 < α < 1. Besides, by using the stationary phase method in both homogeneous and scattering medium, similar behaviors of the singular components for the second-order cross correlation are obtained. Finally, two imaging methods are proposed to search for a target point reflector: One method is based on the imaging function, and has a better signal-to-noise rate; Another method is based on the geometric property, and can improve the bad range resolution of the imaging results.
In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [29]. Both limiters use information of the DG solutions only from the target cell and its immediate neighboring cells, thus maintaining the original compactness of the DG scheme. The goal of both limiters is to obtain high order accuracy and non-oscillatory properties simultaneously. The main novelty of the new HWENO limiter in this paper is to reconstruct the polynomial on the target cell in a least square fashion [8] while the simple WENO limiter [29] is to use the entire polynomial of the original DG solutions in the neighboring cells with an addition of a constant for conservation. The modification in this paper improves the robustness in the computation of problems with strong shocks or contact discontinuities, without changing the compact stencil of the DG scheme. Numerical results for both one and two dimensional equations including Euler equations of compressible gas dynamics are provided to illustrate the viability of this modified limiter.
We improve a previous result about the local energy decay for the damped wave equation on $\mathbb{R}^{d}$. The problem is governed by a Laplacian associated with a long-range perturbation of the flat metric and a short-range absorption index. Our purpose is to recover the decay ${\mathcal{O}}(t^{-d+\unicode[STIX]{x1D700}})$ in the weighted energy spaces. The proof is based on uniform resolvent estimates, given by an improved version of the dissipative Mourre theory. In particular, we have to prove the limiting absorption principle for the powers of the resolvent with inserted weights.
The nonlinear and weakly dispersive Serre equations contain higher-order dispersive terms. These include mixed spatial and temporal derivative flux terms which are difficult to handle numerically. These terms can be replaced by an alternative combination of equivalent temporal and spatial terms, so that the Serre equations can be written in conservation law form. The water depth and new conserved quantities are evolved using a second-order finite-volume scheme. The remaining primitive variable, the depth-averaged horizontal velocity, is obtained by solving a second-order elliptic equation using simple finite differences. Using an analytical solution and simulating the dam-break problem, the proposed scheme is shown to be accurate, simple to implement and stable for a range of problems, including flows with steep gradients. It is only slightly more computationally expensive than solving the shallow water wave equations.
In this paper a three-step scheme is applied to solve the Camassa-Holm (CH) shallow water equation. The differential order of the CH equation has been reduced in order to facilitate development of numerical scheme in a comparatively smaller grid stencil. Here a three-point seventh-order spatially accurate upwinding combined compact difference (CCD) scheme is proposed to approximate the firstorder derivative term. We conduct modified equation analysis on the CCD scheme and eliminate the leading discretization error terms for accurately predicting unidirectional wave propagation. The Fourier analysis is carried out as well on the proposed numerical scheme to minimize the dispersive error. For preserving Hamiltonians in Camassa- Holm equation, a symplecticity conserving time integrator has been employed. The other main emphasis of the present study is the use of u–P–α formulation to get nondissipative CH solution for peakon-antipeakon and soliton-anticuspon head-on wave collision problems.