To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Traffic flow is treated as a continuum governed by the kinematic LWR model and the Greenshield flux function. The model is modified to describe traffic flow on a road with traffic lights or a roundabout. Parameters introduced determine the traffic flow behaviour and queue formation, and numerical simulations based on the Godunov method are carried out. The numerical procedure is shown to converge, and produces results consistent with previous analytic results.
In this work, the Bishop and Love models for longitudinal vibrations are adopted to study the dynamics of isotropic rods with conical and exponential cross-sections. Exact solutions of both models are derived, using appropriate transformations. The analytical solutions of these two models are obtained in terms of generalised hypergeometric functions and Legendre spherical functions respectively. The exact solution of Love model for a rod with exponential cross-section is expressed as a sum of Gauss hypergeometric functions. The models are solved numerically by using the method of lines to reduce the original PDE to a system of ODEs. The accuracy of the numerical approximations is studied in the case of special solutions.
In this paper, we study the Camassa-Holm equation and the Degasperis-Procesi equation. The two equations are in the family of integrable peakon equations, and both have very rich geometric properties. Based on these geometric structures, we construct the geometric numerical integrators for simulating their soliton solutions. The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties, however they also have the significant difference, for example there exist the shock wave solutions for the Degasperis-Procesi equation. By using the symplectic Fourier pseudo-spectral integrator, we simulate the peakon solutions of the two equations. To illustrate the smooth solitons and shock wave solutions of the DP equation, we use the splitting technique and combine the composition methods. In the numerical experiments, comparisons of these two kinds of methods are presented in terms of accuracy, computational cost and invariants preservation.
Because of stability constraints, most numerical schemes applied to hyperbolic systems of equations turn out to be costly when the flux term is multiplied by some very large scalar. This problem emerges with the M1 system of equations in the field of radiotherapy when considering heterogeneous media with very disparate densities. Additionally, the flux term of the M1 system is non-linear, and in order for the model to be well-posed the numerical solution needs to fulfill conditions called realizability. In this paper, we propose a numerical method that overcomes the stability constraint and preserves the realizability property. For this purpose, we relax the M1 system to obtain a linear flux term. Then we extend the stencil of the difference quotient to obtain stability. The scheme is applied to a radiotherapy dose calculation example.
A front tracking method combined with the real ghost fluid method (RGFM) is proposed for simulations of fluid interfaces in two-dimensional compressible flows. In this paper the Riemann problem is constructed along the normal direction of interface and the corresponding Riemann solutions are used to track fluid interfaces. The interface boundary conditions are defined by the RGFM, and the fluid interfaces are explicitly tracked by several connected marker points. The Riemann solutions are also used directly to update the flow states on both sides of the interface in the RGFM. In order to validate the accuracy and capacity of the new method, extensive numerical tests including the bubble advection, the Sod tube, the shock-bubble interaction, the Richtmyer-Meshkov instability and the gas-water interface, are simulated by using the Euler equations. The computational results are also compared with earlier computational studies and it shows good agreements including the compressible gas-water system with large density differences.
We prove a family of sharp bilinear space–time estimates for the half-wave propagator $\text{e}^{\text{i}t\sqrt{-\unicode[STIX]{x1D6E5}}}$. As a consequence, for radially symmetric initial data, we establish sharp estimates of this kind for a range of exponents beyond the classical range.
There is a huge jump in the theory of conservation laws if the convexity assumption is dropped. We study a scalar conservation law without the convexity assumption by monitoring the dynamics in the fundamental solution. We introduce three shock types in addition to the usual genuine shock: left-, right- and double-sided contacts. There are three kinds of phenomenon for these shocks, called branching, merging and transforming. All of these shocks and phenomena can be observed if the flux function has two inflection points. A comprehensive picture of a global dynamics of a non-convex flux is discussed in terms of characteristic maps and dynamical convex–concave envelopes.
We present a new method for investigating the Lp-type pullback attractors (2 ≤ p < ∞) of a semilinear heat equation on a time-varying domain under quite general assumptions on the nonlinear and forcing terms. The existing approach does not appear applicable here as it is impossible to show the existence of a pullback absorbing set in Lp space when p is large. A new asymptotic decomposition scheme for a non-autonomous pullback attractor has been introduced. The abstract results and preliminary lemmas are also of independent interest and applicable to other systems.
The accuracy of moment equations as approximations of kinetic gas theory is studied for four different boundary value problems. The kinetic setting is given by the BGK equation linearized around a globally constant Maxwellian using one space dimension and a three-dimensional velocity space. The boundary value problems include Couette and Poiseuille flow as well as heat conduction between walls and heat conduction based on a locally varying heating source. The polynomial expansion of the distribution function allows for different moment theories of which two popular families are investigated in detail. Furthermore, optimal approximations for a given number of variables are studied empirically. The paper focuses on approximations with relatively low number of variables which allows to draw conclusions in particular about specific moment theories like the regularized 13-moment equations.
It is well known that grid discontinuities have significant impact on the performance of finite difference schemes (FDSs). The geometric conservation law (GCL) is very important for FDSs on reducing numerical oscillations and ensuring free-stream preservation in curvilinear coordinate system. It is not quite clear how GCL works in finite difference method and how GCL errors affect spatial discretization errors especially in nonsmooth grids. In this paper, a method is developed to analyze the impact of grid discontinuities on the GCL errors and spatial discretization errors. A violation of GCL cause GCL errors which depend on grid smoothness, grid metrics method and finite difference operators. As a result there are more source terms in spatial discretization errors. The analysis shows that the spatial discretization accuracy on non-sufficiently smooth grids is determined by the discontinuity order of grids and can approach one higher order by following GCL. For sufficiently smooth grids, the spatial discretization accuracy is determined by the order of FDSs and FDSs satisfying the GCL can obtain smaller spatial discretization errors. Numerical tests have been done by the second-order and fourth-order FDSs to verify the theoretical results.
This paper is concerned with the asymptotic behaviour of solutions to quasilinear hyperbolic equations with nonlinear damping on the quarter-plane (x, t) ∈ ℝ+ x ∈ ℝ+. We obtain the Lp (1 ≤ p ≤ +∞) convergence rates of the solution to the quasilinear hyperbolic equations without the additional technical assumptions for the nonlinear damping f(v) given by Li and Saxton.
With the aim of solving in a four dimensional phase space a multi-scale Vlasov-Poisson system, we propose in a Particle-In-Cell framework a robust time-stepping method that works uniformly when the small parameter vanishes. As an exponential integrator, the scheme is able to use large time steps with respect to the typical size of the solution’s fast oscillations. In addition, we show numerically that the method has accurate long time behaviour and that it is asymptotic preserving with respect to the limiting Guiding Center system.
The paper deals with blow-up for the solutions of an evolution problem consisting in a semilinear wave equation posed in a bounded C1,1 open subset of ℝn, supplied with a Neumann boundary condition involving a nonlinear dissipation. The typical problem studied is
where ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, σ(Γ0) > 0, 2 < p ≤ 2(n − 1)/(n − 2) (when n ≥ 3), m > 1, α ∈ L∞(Γ1), α ≥ 0 and β ≥ 0. The initial data are posed in the energy space.The aim of the paper is to improve previous blow-up results concerning the problem.
We discuss the development, verification, and performance of a GPU accelerated discontinuous Galerkin method for the solutions of two dimensional nonlinear shallow water equations. The shallow water equations are hyperbolic partial differential equations and are widely used in the simulation of tsunami wave propagations. Our algorithms are tailored to take advantage of the single instruction multiple data (SIMD) architecture of graphic processing units. The time integration is accelerated by local time stepping based on a multi-rate Adams-Bashforthscheme. A total variational bounded limiter is adopted for nonlinear stability of the numerical scheme. This limiter is coupled with a mass and momentum conserving positivity preserving limiter for the special treatment of a dry or partially wet element in the triangulation. Accuracy, robustness and performance are demonstrated with the aid of test cases. Furthermore, we developed a unified multi-threading model OCCA. The kernels expressed in OCCA model can be cross-compiled with multi-threading models OpenCL, CUDA, and OpenMP. We compare the performance of the OCCA kernels when cross-compiled with these models.
It has been known for a long time that the equivariant $2+1$ wave map into the $2$-sphere blows up if the initial data are chosen appropriately. Here, we present numerical evidence for the stability of the blow-up phenomenon under explicit violations of equivariance.
In this paper, we investigate the existence of global weak solutions to an integrable two-component Camassa–Holm shallow-water system, provided the initial data u0(x) and ρ0(x) have end states u± and ρ±, respectively. By perturbing the Cauchy problem of the system around rarefaction waves of the well-known Burgers equation, we obtain a global weak solution for the system under the assumptions u− ≤ u+ and ρ− ≤ ρ+.
This paper is concerned with the initial boundary value problem of a class of nonlinear wave equations and reaction–diffusion equations with several nonlinear source terms of different signs. For the initial boundary value problem of the nonlinear wave equations, we derive a blow up result for certain initial data with arbitrary positive initial energy. For the initial boundary value problem of the nonlinear reaction–diffusion equations, we discuss some probabilities of the existence and nonexistence of global solutions and give some sufficient conditions for the global and nonglobal existence of solutions at high initial energy level by employing the comparison principle and variational methods.
Existence and admissibility of δ-shock solutions is discussed for the non-convex strictly hyperbolic system of equations
The system is fully nonlinear, i.e. it is nonlinear with respect to both unknowns, and it does not admit the classical Lax-admissible solution for certain Riemann problems. By introducing complex-valued corrections in the framework of the weak asymptotic method, we show that a compressive δ-shock solution resolves such Riemann problems. By letting the approximation parameter tend to zero, the corrections become real valued, and the solutions can be seen to fit into the framework of weak singular solutions defined by Danilov and Shelkovich. Indeed, in this context, we can show that every 2 × 2 system of conservation laws admits δ-shock solutions.
We show improved local energy decay for the wave equation on asymptotically Euclidean manifolds in odd dimensions in the short range case. The precise decay rate depends on the decay of the metric towards the Euclidean metric. We also give estimates of powers of the resolvent of the wave propagator between weighted spaces.