We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give formulae for different types of contact distribution functions for stationary (not necessarily Poisson) Voronoi tessellations in ℝd in terms of the Palm void probabilities of the generating point process. Moreover, using the well-known relationship between the linear contact distribution and the chord length distribution we derive a closed form expression for the mean chord length in terms of the two-point Palm distribution and the pair correlation function of the generating point process. The results obtained are specified for Voronoi tessellations generated by Poisson cluster and Gibbsian processes, respectively.
For fixed i let X(i) = (X1(i), …, Xd(i)) be a d-dimensional random vector with some known joint distribution. Here i should be considered a time variable. Let X(i), i = 1, …, n be a sequence of n independent vectors, where n is the total horizon. In many examples Xj(i) can be thought of as the return to partner j, when there are d ≥ 2 partners, and one stops with the ith observation. If the jth partner alone could decide on a (random) stopping rule t, his goal would be to maximize EXj(t) over all possible stopping rules t ≤ n. In the present ‘multivariate’ setup the d partners must however cooperate and stop at the same stopping time t, so as to maximize some agreed function h(∙) of the individual expected returns. The goal is thus to find a stopping rule t* for which h(EX1 (t), …, EXd(t)) = h (EX(t)) is maximized. For continuous and monotone h we describe the class of optimal stopping rules t*. With some additional symmetry assumptions we show that the optimal rule is one which (also) maximizes EZt where Zi = ∑dj=1Xj(i), and hence has a particularly simple structure. Examples are included, and the results are extended both to the infinite horizon case and to the case when X(1), …, X(n) are dependent. Asymptotic comparisons between the present problem of finding suph(EX(t)) and the ‘classical’ problem of finding supEh(X(t)) are given. Comparisons between the optimal return to the statistician and to a ‘prophet’ are also included. In the present context a ‘prophet’ is someone who can base his (random) choice g on the full sequence X(1), …, X(n), with corresponding return suph(EX(g)).
We prove a central limit theorem for conditionally centred random fields, under a moment condition and strict positivity of the empirical variance per observation. We use a random normalization, which fits non-stationary situations. The theorem applies directly to Markov random fields, including the cases of phase transition and lack of stationarity. One consequence is the asymptotic normality of the maximum pseudo-likelihood estimator for Markov fields in complete generality.
We study a point process model with stochastic intensities for a particular branching population of individuals of two types. Type-I individuals immigrate into the population at the times of a Poisson process. During their lives they generate type-II individuals according to a random age dependent birth rate, which themselves may multiply and die. Living type-II descendants increase the death intensity of their type-I ancestor, and conversely, the multiplication and dying intensities of type-II individuals may depend on the life situation of their type-I ancestor. We show that the probability generating function of the marginal distribution of a type-I individual's life process, conditioned on its individual infection and death risk, satisfies an initial value problem of a partial differential equation, and derive its solution. This allows for the determination of additional distributions of observable random variables as well as for describing the complete population process.
Analytic approximations are derived for the distribution of the first crossing time of a straight-line boundary by a d-dimensional Bessel process and its discrete time analogue. The main ingredient for the approximations is the conditional probability that the process crossed the boundary before time m, given its location beneath the boundary at time m. The boundary crossing probability is of interest as the significance level and power of a sequential test comparing d+1 treatments using an O'Brien-Fleming (1979) stopping boundary (see Betensky 1996). Also, it is shown by DeLong (1980) to be the limiting distribution of a nonparametric test statistic for multiple regression. The approximations are compared with exact values from the literature and with values from a Monte Carlo simulation.
We derive formulas for the first- and higher-order derivatives of the steady state performance measures for changes in transition matrices of irreducible and aperiodic Markov chains. Using these formulas, we obtain a Maclaurin series for the performance measures of such Markov chains. The convergence range of the Maclaurin series can be determined. We show that the derivatives and the coefficients of the Maclaurin series can be easily estimated by analysing a single sample path of the Markov chain. Algorithms for estimating these quantities are provided. Markov chains consisting of transient states and multiple chains are also studied. The results can be easily extended to Markov processes. The derivation of the results is closely related to some fundamental concepts, such as group inverse, potentials, and realization factors in perturbation analysis. Simulation results are provided to illustrate the accuracy of the single sample path based estimation. Possible applications to engineering problems are discussed.
Given a sequence of random variables (rewards), the Haviv–Puterman differential equation relates the expected infinite-horizon λ-discounted reward and the expected total reward up to a random time that is determined by an independent negative binomial random variable with parameters 2 and λ. This paper provides an interpretation of this proven, but previously unexplained, result. Furthermore, the interpretation is formalized into a new proof, which then yields new results for the general case where the rewards are accumulated up to a time determined by an independent negative binomial random variable with parameters k and λ.
We show that the GEM process has strong ordering properties: the probability that one of the k largest elements in the GEM sequence is beyond the first ck elements (c > 1) decays superexponentially in k.
This paper introduces a new stochastic process in which the iterates of a dynamical system evolving in discrete time coincide with the events of a Poisson process. The autocovariance function of the stochastic process is studied and a necessary and sufficient condition for it to vanish is deduced. It is shown that the mean function of this process comprises a continuous-time semidynamical system if the underlying dynamical map is linear. The flow of probability density functions generated by the stochastic process is analysed in detail, and the relationship between the flow and the solutions of the linear Boltzmann equation is investigated. It is shown that the flow is a semigroup if and only if the point process defining the stochastic process is Poisson, thereby providing a new characterization of the Poisson process.
The immigration processes associated with a given branching particle system are formulated by skew convolution semigroups. It is shown that every skew convolution semigroup corresponds uniquely to a locally integrable entrance law for the branching particle system. The immigration particle system may be constructed using a Poisson random measure based on a Markovian measure determined by the entrance law. In the special case where the underlying process is a minimal Brownian motion in a bounded domain, a general representation is given for locally integrable entrance laws for the branching particle system. The convergence of immigration particle systems to measure-valued immigration processes is also studied.
The ‘minimal’ repair of a system can take several forms. Statistical or black box minimal repair at failure time t is equivalent to replacing the system with another functioning one of the same age, but without knowledge of precisely what went wrong with the system. Its major attribute is its mathematical tractability. In physical minimal repair, at system failure time t, we minimally repair the ‘component’ which brought the system down at time t. The work of Arjas and Norros, Finkelstein, and Natvig is reviewed. The concept of a rate function for minimal repairs of the statistical and physical types are discussed and developed. It is shown that the number of physical minimal repairs is stochastically larger than the number of statistical minimal repairs for k out of n systems with similar components. Some majorization results are given for physical minimal repair for two component parallel systems with exponential components.
Previous work in extending Wald's equations to Markov random walks involves finiteness of moment generating functions and uniform recurrence assumptions. By using a new approach, we can remove these assumptions. The results are applied to establish finiteness of moments of ladder variables and to derive asymptotic expansions for expected first passage times of Markov random walks. Wiener–Hopf factorizations for Markov random walks are also applied to analyse ladder variables and related first passage problems.
The distribution of the final size, K, in a general SIR epidemic model is considered in a situation when the critical parameter λ is close to 1. It is shown that with a ‘critical scaling’ λ ≈ 1 + a / n1/3, m ≈ bn1/3, where n is the initial number of susceptibles and m is the initial number of infected, then K / n2/3 has a limit distribution when n → ∞. It can be described as that of T, the first passage time of a Wiener process to a parabolic barrier b + at − t2/2. The proof is based on a diffusion approximation. Moreover, it is shown that the distribution of T can be expressed analytically in terms of Airy functions using the spectral representation connected with Airy's differential equation.
Let n points be placed independently in ν-dimensional space according to the standard ν-dimensional normal distribution. Let Mn be the longest edge-length of the minimal spanning tree on these points; equivalently let Mn be the infimum of those r such that the union of balls of radius r/2 centred at the points is connected. We show that the distribution of (2 log n)1/2Mn - bn converges weakly to the Gumbel (double exponential) distribution, where bn are explicit constants with bn ~ (ν - 1)log log n. We also show the same result holds if Mn is the longest edge-length for the nearest neighbour graph on the points.
We present an estimation procedure and analyse spectral properties of stochastic processes of the kind Zt = Xt + ξt = ϕ(Tt(ψ)) + ξt, for t ∊ Z, where T is a deterministic map, ϕ is a given function and ξt is a noise process. The examples considered in this paper generalize the classical harmonic model Zt = Acos(ω0t + ψ) + ξt, for t ∊ Z. Two examples are developed at length. In the first one, the spectral measure is discrete and in the second it is continuous. In the second example, the time series is obtained from a chaotic map. These two examples exhibit the extremal cases of different possibilities for the spectral measure of time series and they are both associated with ergodic deterministic transformations with noise. We present a method for obtaining explicitly the spectral density function (second example) and the autocorrelation coefficients (first example). In the first example the rotation number plays an important role. We also consider large deviation properties of the estimated parameters of the model.
Consider a machine, which may or may not have a defect, and the probability q that this machine is defective is unknown. In order to determine whether the machine is defective, it is tested. On each test, the defect is found with probability p, if it has not been found yet. Performing n tests costs cn dollars and there is a fine of 1 dollar if there is a defect and it is not found on the tests. When should we stop testing, in order to minimize the cost?
This problem is treated in a minimax setting: we try to find a strategy that works well, even for ‘bad’ q's. It turns out that the minimax optimal stop rule can be unexpectedly complicated. For example, if p = 1/2 and cn = cn = 0.25n, then the optimal rule is to start by performing one test. If a defect is found we stop, otherwise we perform a second test. If a defect is found, then again we stop, else toss a coin and stop if this shows heads. If we still have not stopped, a third and last test is performed.
Size-biased permutation (SBP) is a random arrangement of frequencies of distinct categories in the order in which the categories appear for the first time in the sampling process. We study the conditions under which the SBPs converge in distribution and discuss extended versions of SBP for the case when the sum of positive frequencies is less than 1.
We prove central limit theorems for certain geometrical characteristics of the convex polygons determined by a standard Poisson line process in the plane, such as: the angles at the vertices of the polygons, the empirical mean of the number of vertices and the empirical mean of the perimeter of the polygons.
Is the Ewens distribution the only one-parameter family of partition structures where the total number of types sampled is a sufficient statistic? In general, the answer is no. It is shown that all counterexamples can be generated via an urn scheme. The urn scheme need only satisfy two general conditions. In fact, the conditions are both necessary and sufficient. However, in particular, for a large class of partition structures that naturally arise in the infinite alleles theory of population genetics, the Ewens distribution is the only one in this class where the total number of types is sufficient for estimating the mutation rate. Finally, asymptotic sufficiency for parametric families of partition structures is discussed.
This note refers to the paper by Geman, El-Karoui and Rochet (1995), in which an extension of the Geske-formula for compound options to the case of stochastic interest rates is proposed. We show that such an extension is not possible in general. However, we point out modifications of Geske's original problem in which closed formulas can still be obtained under stochastic interest rates. In particular we consider the case of an option on a future-style option. Moreover, we sketch a numerical solution to Geske's original problem when interest rates are random.