We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate in this paper the stability of non-stationary stochastic processes, arising typically in applications of control. The setting is known as stochastic recursive sequences, which allows us to construct on one probability space stochastic processes that correspond to different initial states and even different control policies. It does not require any Markovian assumptions. A natural criterion for stability for such processes is that the influence of the initial state disappears after some finite time; in other words, starting from different initial states, the process will couple after some finite time to the same limiting (not necessarily stationary nor ergodic) stochastic process. We investigate this as well as other types of coupling, and present conditions for them to occur uniformly in some class of control policies. We then use the coupling results to establish new theoretical aspects in the theory of non-Markovian control.
The distribution of the number of items drawn in a secretary problem, with an order s selection role and a success if any of the best s items is selected, is obtained by a probabilistic argument. Moments and asymptotics readily follow.
In this paper, multivariate strict sense stationary stochastic processes are considered. It is shown that there exists a universal function by means of which the conditional expectation of any stationary process with respect to its past can be represented. This requires no ergodicity assumptions. The important implications of this result in the evaluation of the achievable performance in certain dynamic estimation problems with incomplete statistical information are also discussed.
We prove large deviation results for the random sum , , where are non-negative integer-valued random variables and are i.i.d. non-negative random variables with common distribution function F, independent of . Special attention is paid to the compound Poisson process and its ramifications. The right tail of the distribution function F is supposed to be of Pareto type (regularly or extended regularly varying). The large deviation results are applied to certain problems in insurance and finance which are related to large claims.
Assessing the reliability of computer software has been an active area of research in computer science for the past twenty years. To date, well over a hundred probability models for software reliability have been proposed. These models have been motivated by seemingly unrelated arguments and have been the subject of active debate and discussion. In the meantime, the search for an ideal model continues to be pursued. The purpose of this paper is to point out that practically all the proposed models for software reliability are special cases of self-exciting point processes. This perspective unifies the very diverse approaches to modeling reliability growth and provides a common structure under which problems of software reliability can be discussed.
The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.
The problem of estimating the integral of a stochastic process from observations at a finite number N of sampling points has been considered by various authors. Recently, Benhenni and Cambanis (1992) studied this problem for processes with mean 0 and Hölder index K + ½, K ; ℕ These results are here extended to processes with arbitrary Hölder index. The estimators built here are linear in the observations and do not require the a priori knowledge of the smoothness of the process. If the process satisfies a Hölder condition with index s in quadratic mean, we prove that the rate of convergence of the mean square error is N2s+1 as N goes to ∞, and build estimators that achieve this rate.
Explicit formulas for the time congestion and the call blocking probability are derived in a single server loss system whose total input consists of a finite superposition of independent general stationary traffic streams with exponentially distributed service times. The results are used for studying to what extent two arrival processes with coinciding customer-stationary state distributions are similar or even identical, and whether an arrival process with coinciding customer-stationary and time-stationary state distributions is of the Poisson type.
Consider a system of interacting finite Markov chains in continuous time, where each subsystem is aggregated by a common partitioning of the state space. The interaction is assumed to arise from dependence of some of the transition rates for a given subsystem at a specified time on the states of the other subsystems at that time. With two subsystem classes, labelled 0 and 1, the superposition process arising from a system counts the number of subsystems in the latter class. Key structure and results from the theory of aggregated Markov processes are summarized. These are then applied also to superposition processes. In particular, we consider invariant distributions for the level m entry process, marginal and joint distributions for sojourn-times of the superposition process at its various levels, and moments and correlation functions associated with these distributions. The distributions are obtained mainly by using matrix methods, though an approach based on point process methods and conditional probability arguments is outlined. Conditions under which an interacting aggregated Markov chain is reversible are established. The ideas are illustrated with simple examples for which numerical results are obtained using Matlab. Motivation for this study has come from stochastic modelling of the behaviour of ion channels; another application is in reliability modelling.
An explicit formula for the probability that a Brownian motion crosses a piecewise linear boundary in a finite time interval is derived. This formula is used to obtain approximations to the crossing probabilities for general boundaries which are the uniform limits of piecewise linear functions. The rules for assessing the accuracies of the approximations are given. The calculations of the crossing probabilities are easily carried out through Monte Carlo methods. Some numerical examples are provided.
We consider the problem of the optimal duration of a burn-in experiment for n identical units with conditionally exponential life-times of unknown parameter Λ. The problem is formulated as an optimal stopping problem for a suitably defined two-dimensional continuous-time Markov process. By exploiting monotonicity properties of the statistical model and of the costs we prove that the optimal stopping region is monotone (according to an appropriate definition) and derive a set of equations that uniquely determine it and that can be easily solved recursively. The optimal stopping region varies monotonically with the costs. For the class of problems corresponding to a prior distribution on Λ of type gamma it is shown how the optimal stopping region varies with respect to the prior distribution and with respect to n.
In this paper we study a new kind of option, called hereinafter a Parisian barrier option. This option is the following variant of the so-called barrier option: a down-and-out barrier option becomes worthless as soon as a barrier is reached, whereas a down-and-out Parisian barrier option is lost by the owner if the underlying asset reaches a prespecified level and remains constantly below this level for a time interval longer than a fixed number, called the window. Properties of durations of Brownian excursions play an essential role. We also study another kind of option, called here a cumulative Parisian option, which becomes worthless if the total time spent below a certain level is too long.
We consider extreme value theory for a class of stationary Markov chains with values in ℝd. The asymptotic distribution of Mn, the vector of componentwise maxima, is determined under mild dependence restrictions and suitable assumptions on the marginal distribution and the transition probabilities of the chain. This is achieved through computation of a multivariate extremal index of the sequence, extending results of Smith [26] and Perfekt [21] to a multivariate setting. As a by-product, we obtain results on extremes of higher-order, real-valued Markov chains. The results are applied to a frequently studied random difference equation.
It is shown that the stationary excursions above level x for the stationary M/G/1 queue with the service time distribution belonging to a certain class of subexponential distributions are asymptotically of two types as x →∞: either the excursion starts with a jump from a level which is O(1) and the initial excess over x converges to ∞, or it starts from a level of the form x – O(1) and the excess has a proper limit distribution. The two types occur with probabilities ρ, resp. 1 – ρ.
We define a leavable stochastic game which is a possible two-person generalization of the classical red-and-black gambling problem. We show that there are three basic possibilities for a two-person red-and-black game which, by analogy with gambling theory, we call the subfair, the fair and the superfair cases. A suitable generalization of what in gambling theory is called bold play is proved to be a uniformly ε-optimal stationary strategy for player I in the fair and the subfair cases whereas a generalization of timid play is shown to be ε-optimal for player I in the superfair possibility.
Given a two-dimensional Poisson process, X, with intensity λ, we are interested in the largest number of points, L, contained in a translate of a fixed scanning set, C, restricted to lie inside a rectangular area.
The distribution of L is accurately approximated for rectangular scanning sets, using a technique that can be extended to higher dimensions. Reasonable approximations for non-rectangular scanning sets are also obtained using a simple correction of the rectangular result.
For sequences of i.i.d. random variables whose common tail 1 – F is regularly varying at infinity wtih an unknown index –α < 0, it is well known that the Hill estimator is consistent for α–1 and usually asymptotically normally distributed. However, because the Hill estimator is a function of k = k(n), the number of upper order statistics used and which is only subject to the conditions k →∞, k/n → 0, its use in practice is problematic since there are few reliable guidelines about how to choose k. The purpose of this paper is to make the use of the Hill estimator more reliable through an averaging technique which reduces the asymptotic variance. As a direct result the range in which the smoothed estimator varies as a function of k decreases and the successful use of the esimator is made less dependent on the choice of k. A tail empirical process approach is used to prove the weak convergence of a process closely related to the Hill estimator. The smoothed version of the Hill estimator is a functional of the tail empirical process.
The empty space function of a stationary point process in ℝd is the function that assigns to each r, r > 0, the probability that there is no point within distance r of O. In a recent paper Van Lieshout and Baddeley study the so-called J-function, which is defined as the ratio of the empty space function of a stationary point process and that of its corresponding reduced Palm process. They advocate the use of the J-function as a characterization of the type of spatial interaction.
Therefore it is natural to ask whether J ≡ 1 implies that the point process is Poisson. We restrict our analysis to the one-dimensional case and show that a classical construction by Szász provides an immediate counterexample. In this example the interpoint distances are still exponentially distributed. This raises the question whether it is possible to have J ≡ 1 but non-exponentially distributed interpoint distances. We construct a point process with J ≡ 1 but where the interpoint distances are bounded.
This paper considers a large class of non-stationary random fields which have fractal characteristics and may exhibit long-range dependence. Its motivation comes from a Lipschitz-Holder-type condition in the spectral domain.
The paper develops a spectral theory for the random fields, including a spectral decomposition, a covariance representation and a fractal index. From the covariance representation, the covariance function and spectral density of these fields are defined. These concepts are useful in multiscaling analysis of random fields with long-range dependence.
In this article we study stochastic perturbations of partial differential equations describing forced-damped vibrations of a string. Two models of such stochastic disturbances are considered; one is triggered by an initial white noise, and the other is in the form of non-Gaussian random forcing. Let uε (t, x) be the displacement at time t of a point x on a string, where the time variable t ≧ 0, and the space variable . The small parameter ε controls the intensity of the random fluctuations. The random fields uε (t, x) are shown to satisfy a large deviations principle, and the random deviations of the unperturbed displacement function are analyzed as the noise parameter ε tends to zero.