We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we deal with generalized fractional kinetic equations driven by a Gaussian noise, white in time and correlated in space, and where the diffusion operator is the composition of the Bessel and Riesz potentials for any fractional parameters. We give results on the existence and uniqueness of solutions by means of a weak formulation and study the Hölder continuity. Moreover, we prove the existence of a smooth density associated to the solution process and study the asymptotics of this density. Finally, when the diffusion coefficient is constant, we look for its Gaussian index.
We introduce a class of stock models that interpolates between exponential Lévy models based on Brownian subordination and certain stochastic volatility models with Lévy-driven volatility, such as the Barndorff-Nielsen–Shephard model. The driving process in our model is a Brownian motion subordinated to a business time which is obtained by convolution of a Lévy subordinator with a deterministic kernel. We motivate several choices of the kernel that lead to volatility clusters while maintaining the sudden extreme movements of the stock. Moreover, we discuss some statistical and path properties of the models, prove absence of arbitrage and incompleteness, and explain how to price vanilla options by simulation and fast Fourier transform methods.
We study several optimal stopping problems in which the gains process is a Brownian bridge or a functional of a Brownian bridge. Our examples constitute natural finite-horizon optimal stopping problems with explicit solutions.
We study the discrete-time approximation of doubly reflected backward stochastic differential equations (BSDEs) in a multidimensional setting. As in Ma and Zhang (2005) or Bouchard and Chassagneux (2008), we introduce the discretely reflected counterpart of these equations. We then provide representation formulae which allow us to obtain new regularity results. We also propose an Euler scheme type approximation and give new convergence results for both discretely and continuously reflected BSDEs.
We consider Monte Carlo methods for the classical nonlinear filtering problem. The first method is based on a backward pathwise filtering equation and the second method is related to a backward linear stochastic partial differential equation. We study convergence of the proposed numerical algorithms. The considered methods have such advantages as a capability in principle to solve filtering problems of large dimensionality, reliable error control, and recurrency. Their efficiency is achieved due to the numerical procedures which use effective numerical schemes and variance reduction techniques. The results obtained are supported by numerical experiments.
A controlled heterogeneous collection of identical items is presented. According to their level of wear and tear, they are divided into a finite number of classes and the partition of the collection is allowed to change over time. A suitable exchangeability assumption is made to preserve the property that the items be identical. The role of the occupation numbers is investigated and a filtering problem is set up, where the observation is the cardinality of a particular class. A control on the dynamics of the items is introduced, and the existence of an optimal control is proved. A discrete-time approximation for the separated problem, which is a finite-dimensional one, is performed. As a consequence, an approximation for the value function is given.
We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.
We study the convergence of at-the-money implied volatilities to the spot volatility in a general model with a Brownian component and a jump component of finite variation. This result is a consequence of the robustness of the Black-Scholes formula and of the central limit theorem for martingales.
We investigate the problem of using a Riemannian sum with random subintervals to approximate the iterated Itô integral ∫wdw - or, equivalently, solving the corresponding stochastic differential equation by Euler's method with variable step sizes. In the past this task has been used as a counterexample to illustrate that variable step sizes must be used with extreme caution in stochastic numerical analysis. This article establishes a class of variable step size schemes which do work.
Weak local linear approximations have played a prominent role in the construction of effective inference methods and numerical integrators for stochastic differential equations. In this note two weak local linear approximations for stochastic differential equations with jumps are introduced as a generalization of previous ones. Their respective order of convergence is obtained as well.
We prove that the Heston volatility is Malliavin differentiable under the classical Novikov condition and give an explicit expression for the derivative. This result guarantees the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model. Furthermore, we derive conditions on the parameters which assure the existence of the second Malliavin derivative of the Heston volatility. This allows us to apply recent results of Alòs (2006) in order to derive approximate option pricing formulae in the context of the Heston model. Numerical results are given.
Continuous-time autoregressive moving average (CARMA) processes with a nonnegative kernel and driven by a nondecreasing Lévy process constitute a very general class of stationary, nonnegative continuous-time processes. In financial econometrics a stationary Ornstein-Uhlenbeck (or CAR(1)) process, driven by a nondecreasing Lévy process, was introduced by Barndorff-Nielsen and Shephard (2001) as a model for stochastic volatility to allow for a wide variety of possible marginal distributions and the possibility of jumps. For such processes, we take advantage of the nonnegativity of the increments of the driving Lévy process to study the properties of a highly efficient estimation procedure for the parameters when observations are available of the CAR(1) process at uniformly spaced times 0,h,…,Nh. We also show how to reconstruct the background driving Lévy process from a continuously observed realization of the process and use this result to estimate the increments of the Lévy process itself when h is small. Asymptotic properties of the coefficient estimator are derived and the results illustrated using a simulated gamma-driven Ornstein-Uhlenbeck process.
We consider the performance of the delta hedging strategy obtained from a local volatility model when using as input the physical prices instead of the model price process. This hedging strategy is called robust if it yields a superhedge as soon as the local volatility model overestimates the market volatility. We show that robustness holds for a standard Black-Scholes model whenever we hedge a path-dependent derivative with a convex payoff function. In a genuine local volatility model the situation is shown to be less stable: robustness can break down for many relevant convex payoffs including average-strike Asian options, lookback puts, floating-strike forward starts, and their aggregated cliquets. Furthermore, we prove that a sufficient condition for the robustness in every local volatility model is the directional convexity of the payoff function.
We consider the tail behavior of the product of two independent nonnegative random variables X and Y. Breiman (1965) has considered this problem, assuming that X is regularly varying with index α and that E{Yα+ε} < ∞ for some ε > 0. We investigate when the condition on Y can be weakened and apply our findings to analyze a class of random difference equations.
The transmission control protocol (TCP) is a transport protocol used in the Internet. In Ott (2005), a more general class of candidate transport protocols called ‘protocols in the TCP paradigm’ was introduced. The long-term objective of studying this class is to find protocols with promising performance characteristics. In this paper we study Markov chain models derived from protocols in the TCP paradigm. Protocols in the TCP paradigm, as TCP, protect the network from congestion by decreasing the ‘congestion window’ (i.e. the amount of data allowed to be sent but not yet acknowledged) when there is packet loss or packet marking, and increasing it when there is no loss. When loss of different packets are assumed to be independent events and the probability p of loss is assumed to be constant, the protocol gives rise to a Markov chain {Wn}, where Wn is the size of the congestion window after the transmission of the nth packet. For a wide class of such Markov chains, we prove weak convergence results, after appropriate rescaling of time and space, as p → 0. The limiting processes are defined by stochastic differential equations. Depending on certain parameter values, the stochastic differential equation can define an Ornstein-Uhlenbeck process or can be driven by a Poisson process.
A stochastic model of a dynamic marker array in which markers could disappear, duplicate, and move relative to its original position is constructed to reflect on the nature of long DNA sequences. The sequence changes of deletions, duplications, and displacements follow the stochastic rules: (i) the original distribution of the marker array {…, X−2, X−1, X0, X1, X2, …} is a Poisson process on the real line; (ii) each marker is replicated l times; replication or loss of marker points occur independently; (iii) each replicated point is independently and randomly displaced by an amount Y relative to its original position, with the Y displacements sampled from a continuous density g(y). Limiting distributions for the maximal and minimal statistics of the r-scan lengths (collection of distances between r + 1 successive markers) for the l-shift model are derived with the aid of the Chen-Stein method and properties of Poisson processes.
We study the optimal portfolio problem for an insider, in the case where the performance is measured in terms of the logarithm of the terminal wealth minus a term measuring the roughness and the growth of the portfolio. We give explicit solutions in some cases. Our method uses stochastic calculus of forward integrals.
Corrected random walk approximations to continuous-time optimal stopping boundaries for Brownian motion, first introduced by Chernoff and Petkau, have provided powerful computational tools in option pricing and sequential analysis. This paper develops the theory of these second-order approximations and describes some new applications.
We develop an integration by parts technique for point processes, with application to the computation of sensitivities via Monte Carlo simulations in stochastic models with jumps. The method is applied to density estimation with respect to the Lebesgue measure via a modified kernel estimator which is less sensitive to variations of the bandwidth parameter than standard kernel estimators. This applies to random variables whose densities are not analytically known and requires the knowledge of the point process jump times.
A simple derivation of the explicit form of the transition density of a planar random motion at finite speed, based on some specific properties of the wave propagation on the plane R2, is given.