To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by recent developments of quasi-stationary Monte Carlo methods, we investigate the stability of quasi-stationary distributions of killed Markov processes under perturbations of the generator. We first consider a general bounded self-adjoint perturbation operator, and then study a particular unbounded perturbation corresponding to truncation of the killing rate. In both scenarios, we quantify the difference between eigenfunctions of the smallest eigenvalue of the perturbed and unperturbed generators in a Hilbert space norm. As a consequence, $\mathcal{L}^1$-norm estimates of the difference of the resulting quasi-stationary distributions in terms of the perturbation are provided.
We show that for $\lambda\in[0,{m_1}/({1+\sqrt{1-{1}/{m_1}}})]$, the biased random walk’s speed on a Galton–Watson tree without leaves is strictly decreasing, where $m_1\geq 2$. Our result extends the monotonic interval of the speed on a Galton–Watson tree.
This paper characterizes irreducible phase-type representations for exponential distributions. Bean and Green (2000) gave a set of necessary and sufficient conditions for a phase-type distribution with an irreducible generator matrix to be exponential. We extend these conditions to irreducible representations, and we thus give a characterization of all irreducible phase-type representations for exponential distributions. We consider the results in relation to time-reversal of phase-type distributions, PH-simplicity, and the algebraic degree of a phase-type distribution, and we give applications of the results. In particular we give the conditions under which a Coxian distribution becomes exponential, and we construct bivariate exponential distributions. Finally, we translate the main findings to the discrete case of geometric distributions.
For a continuous-time phase-type (PH) distribution, starting with its Laplace–Stieltjes transform, we obtain a necessary and sufficient condition for its minimal PH representation to have the same order as its algebraic degree. To facilitate finding this minimal representation, we transform this condition equivalently into a non-convex optimization problem, which can be effectively addressed using an alternating minimization algorithm. The algorithm convergence is also proved. Moreover, the method we develop for the continuous-time PH distributions can be used directly for the discrete-time PH distributions after establishing an equivalence between the minimal representation problems for continuous-time and discrete-time PH distributions.
We establish a number of results concerning the limiting behaviour of the longest edges in the genealogical tree generated by a continuous-time Galton–Watson process. Separately, we consider the large-time behaviour of the longest pendant edges, the longest (strictly) interior edges, and the longest of all the edges. These results extend the special case of long pendant edges of birth–death processes established in Bocharov et al. (2023).
We study the Markov chain Monte Carlo estimator for numerical integration for functions that do not need to be square integrable with respect to the invariant distribution. For chains with a spectral gap we show that the absolute mean error for $L^p$ functions, with $p \in (1,2)$, decreases like $n^{({1}/{p}) -1}$, which is known to be the optimal rate. This improves currently known results where an additional parameter $\delta \gt 0$ appears and the convergence is of order $n^{(({1+\delta})/{p})-1}$.
We consider the hard-core model on a finite square grid graph with stochastic Glauber dynamics parametrized by the inverse temperature $\beta$. We investigate how the transition between its two maximum-occupancy configurations takes place in the low-temperature regime $\beta \to \infty$ in the case of periodic boundary conditions. The hard-core constraints and the grid symmetry make the structure of the critical configurations for this transition, also known as essential saddles, very rich and complex. We provide a comprehensive geometrical characterization of these configurations that together constitute a bottleneck for the Glauber dynamics in the low-temperature limit. In particular, we develop a novel isoperimetric inequality for hard-core configurations with a fixed number of particles and show how the essential saddles are characterized not only by the number of particles but also their geometry.
The study of many population growth models is complicated by only partial observation of the underlying stochastic process driving the model. For example, in an epidemic outbreak we might know when individuals show symptoms to a disease and are removed, but not when individuals are infected. Motivated by the above example and the long-established approximation of epidemic processes by branching processes, we explore the number of individuals alive in a time-inhomogeneous branching process with a general phase-type lifetime distribution given only (partial) information on the times of deaths of individuals. Deaths are detected independently with a detection probability that can vary with time and type. We show that the number of individuals alive immediately after the kth detected death can be expressed as the mixture of random variables each of which consists of the sum of k independent zero-modified geometric distributions. Furthermore, in the case of an Erlang lifetime distribution, we derive an easy-to-compute mixture of negative binomial distributions as an approximation of the number of individuals alive immediately after the kth detected death.
We consider time-inhomogeneous ordinary differential equations (ODEs) whose parameters are governed by an underlying ergodic Markov process. When this underlying process is accelerated by a factor $\varepsilon^{-1}$, an averaging phenomenon occurs and the solution of the ODE converges to a deterministic ODE as $\varepsilon$ vanishes. We are interested in cases where this averaged flow is globally attracted to a point. In that case, the equilibrium distribution of the solution of the ODE converges to a Dirac mass at this point. We prove an asymptotic expansion in terms of $\varepsilon$ for this convergence, with a somewhat explicit formula for the first-order term. The results are applied in three contexts: linear Markov-modulated ODEs, randomized splitting schemes, and Lotka–Volterra models in a random environment. In particular, as a corollary, we prove the existence of two matrices whose convex combinations are all stable but are such that, for a suitable jump rate, the top Lyapunov exponent of a Markov-modulated linear ODE switching between these two matrices is positive.
The basic question in perturbation analysis of Markov chains is: how do small changes in the transition kernels of Markov chains translate to chains in their stationary distributions? Many papers on the subject have shown, roughly, that the change in stationary distribution is small as long as the change in the kernel is much less than some measure of the convergence rate. This result is essentially sharp for generic Markov chains. We show that much larger errors, up to size roughly the square root of the convergence rate, are permissible for many target distributions associated with graphical models. The main motivation for this work comes from computational statistics, where there is often a tradeoff between the per-step error and per-step cost of approximate MCMC algorithms. Our results show that larger perturbations (and thus less-expensive chains) still give results with small error.
The problem of reservation in a large distributed system is analyzed via a new mathematical model. The target application is car-sharing systems. This model is motivated by the large station-based car-sharing system in France called Autolib’. This system can be described as a closed stochastic network where the nodes are the stations and the customers are the cars. The user can reserve a car and a parking space. We study the evolution of the system when the reservation of parking spaces and cars is effective for all users. The asymptotic behavior of the underlying stochastic network is given when the number N of stations and the fleet size M increase at the same rate. The analysis involves a Markov process on a state space with dimension of order $N^2$. It is quite remarkable that the state process describing the evolution of the stations, whose dimension is of order N, converges in distribution, although not Markov, to a non-homogeneous Markov process. We prove this mean-field convergence. We also prove, using combinatorial arguments, that the mean-field limit has a unique equilibrium measure when the time between reserving and picking up the car is sufficiently small. This result extends the case where only the parking space can be reserved.
Let $B^{H}$ be a d-dimensional fractional Brownian motion with Hurst index $H\in(0,1)$, $f\,:\,[0,1]\longrightarrow\mathbb{R}^{d}$ a Borel function, and $E\subset[0,1]$, $F\subset\mathbb{R}^{d}$ are given Borel sets. The focus of this paper is on hitting probabilities of the non-centered Gaussian process $B^{H}+f$. It aims to highlight how each component f, E and F is involved in determining the upper and lower bounds of $\mathbb{P}\{(B^H+f)(E)\cap F\neq \emptyset \}$. When F is a singleton and f is a general measurable drift, some new estimates are obtained for the last probability by means of suitable Hausdorff measure and capacity of the graph $Gr_E(f)$. As application we deal with the issue of polarity of points for $(B^H+f)\vert_E$ (the restriction of $B^H+f$ to the subset $E\subset (0,\infty)$).
The embedding problem of Markov chains examines whether a stochastic matrix$\mathbf{P} $ can arise as the transition matrix from time 0 to time 1 of a continuous-time Markov chain. When the chain is homogeneous, it checks if $ \mathbf{P}=\exp{\mathbf{Q}}$ for a rate matrix $ \mathbf{Q}$ with zero row sums and non-negative off-diagonal elements, called a Markov generator. It is known that a Markov generator may not always exist or be unique. This paper addresses finding $ \mathbf{Q}$, assuming that the process has at most one jump per unit time interval, and focuses on the problem of aligning the conditional one-jump transition matrix from time 0 to time 1 with $ \mathbf{P}$. We derive a formula for this matrix in terms of $ \mathbf{Q}$ and establish that for any $ \mathbf{P}$ with non-zero diagonal entries, a unique $ \mathbf{Q}$, called the ${\unicode{x1D7D9}}$-generator, exists. We compare the ${\unicode{x1D7D9}}$-generator with the one-jump rate matrix from Jarrow, Lando, and Turnbull (1997), showing which is a better approximate Markov generator of $ \mathbf{P}$ in some practical cases.
We consider the performance of Glauber dynamics for the random cluster model with real parameter $q\gt 1$ and temperature $\beta \gt 0$. Recent work by Helmuth, Jenssen, and Perkins detailed the ordered/disordered transition of the model on random $\Delta$-regular graphs for all sufficiently large $q$ and obtained an efficient sampling algorithm for all temperatures $\beta$ using cluster expansion methods. Despite this major progress, the performance of natural Markov chains, including Glauber dynamics, is not yet well understood on the random regular graph, partly because of the non-local nature of the model (especially at low temperatures) and partly because of severe bottleneck phenomena that emerge in a window around the ordered/disordered transition. Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from worst-case starting configurations can be avoided by initialising the chain more judiciously. Our main result establishes this conjecture for all sufficiently large $q$ (with respect to $\Delta$). Specifically, we consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the all-in and all-out, and obtain a pair of fast mixing bounds which cover all temperatures $\beta$, including in particular the bottleneck window. Our result is inspired by the recent approach of Gheissari and Sinclair for the Ising model who obtained a similar flavoured mixing-time bound on the random regular graph for sufficiently low temperatures. To cover all temperatures in the RC model, we refine appropriately the structural results of Helmuth, Jenssen and Perkins about the ordered/disordered transition and show spatial mixing properties ‘within the phase’, which are then related to the evolution of the chain.
We solve the non-discounted, finite-horizon optimal stopping problem of a Gauss–Markov bridge by using a time-space transformation approach. The associated optimal stopping boundary is proved to be Lipschitz continuous on any closed interval that excludes the horizon, and it is characterized by the unique solution of an integral equation. A Picard iteration algorithm is discussed and implemented to exemplify the numerical computation and geometry of the optimal stopping boundary for some illustrative cases.
We present a closed-form solution to a discounted optimal stopping zero-sum game in a model based on a generalised geometric Brownian motion with coefficients depending on its running maximum and minimum processes. The optimal stopping times forming a Nash equilibrium are shown to be the first times at which the original process hits certain boundaries depending on the running values of the associated maximum and minimum processes. The proof is based on the reduction of the original game to the equivalent coupled free-boundary problem and the solution of the latter problem by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are partially determined as either unique solutions to the appropriate system of arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary differential equations. The results obtained are related to the valuation of the perpetual lookback game options with floating strikes in the appropriate diffusion-type extension of the Black–Merton–Scholes model.
This paper studies a novel Brownian functional defined as the supremum of a weighted average of the running Brownian range and its running reversal from extrema on the unit interval. We derive the Laplace transform for the squared reciprocal of this functional, which leads to explicit moment expressions that are new to the literature. We show that the proposed Brownian functional can be used to estimate the spot volatility of financial returns based on high-frequency price observations.
Consider a branching random walk on the real line with a random environment in time (BRWRE). A necessary and sufficient condition for the non-triviality of the limit of the derivative martingale is formulated. To this end, we investigate the random walk in a time-inhomogeneous random environment (RWRE), which is related to the BRWRE by the many-to-one formula. The key step is to figure out Tanaka’s decomposition for the RWRE conditioned to stay non-negative (or above a line), which is interesting in itself.
We introduce a modification of the generalized Pólya urn model containing two urns, and we study the number of balls $B_j(n)$ of a given color $j\in\{1,\ldots,J\}$ added to the urns after n draws, where $J\in\mathbb{N}$. We provide sufficient conditions under which the random variables $(B_j(n))_{n\in\mathbb{N}}$, properly normalized and centered, converge weakly to a limiting random variable. The result reveals a similar trichotomy as in the classical case with one urn, one of the main differences being that in the scaling we encounter 1-periodic continuous functions. Another difference in our results compared to the classical urn models is that the phase transition of the second-order behavior occurs at $\sqrt{\rho}$ and not at $\rho/2$, where $\rho$ is the dominant eigenvalue of the mean replacement matrix.
We analyze the process M(t) representing the maximum of the one-dimensional telegraph process X(t) with exponentially distributed upward random times and generally distributed downward random times. The evolution of M(t) is governed by an alternating renewal of two phases: a rising phase R and a constant phase C. During a rising phase, X(t) moves upward, whereas, during a constant phase, it moves upward and downward, continuing to move until it attains the maximal level previously reached. Under some choices of the distribution of the downward times, we are able to determine the distribution of C, which allows us to obtain some bounds for the survival function of M(t). In the particular case of exponential downward random times, we derive an explicit expression for the survival function of M(t). Finally, the moments of the first passage time $\Theta_w$ of the process X(t) through a fixed boundary $w>0$ are analyzed.