To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces stochastic gradient MCMC (SG-MCMC) algorithms, designed to scale Bayesian inference to large datasets. Beginning with the unadjusted Langevin algorithm (ULA), it extends to more sophisticated methods such as stochastic gradient Langevin dynamics (SGLD). The chapter emphasises controlling the stochasticity in gradient estimators and explores the role of control variates in reducing variance. Convergence properties of SG-MCMC methods are analysed, with experiments demonstrating their performance in logistic regression and Bayesian neural networks. It concludes by outlining a general framework for SG-MCMC and offering practical guidance for efficient, scalable Bayesian learning.
We study a variant of the classical Markovian logistic SIS epidemic model on a complete graph, which has the additional feature that healthy individuals can become infected without contacting an infected member of the population. This additional ‘self-infection’ is used to model situations where there is an unknown source of infection or an external disease reservoir, such as an animal carrier population. In contrast to the classical logistic SIS epidemic model, the version with self-infection has a non-degenerate stationary distribution, and we derive precise asymptotics for the time to converge to stationarity (mixing time) as the population size becomes large. It turns out that the chain exhibits the cutoff phenomenon, which is a sharp transition in time from one to zero of the total variation distance to stationarity. We obtain the exact leading constant for the cutoff time and show that the window size is of constant (optimal) order. While this result is interesting in its own right, an additional contribution of this work is that the proof illustrates a recently formalised methodology of Barbour, Brightwell and Luczak (2022), ‘Long-term concentration of measure and cut-off’, Stochastic Processes and their Applications152, 378–423, which can be used to show cutoff via a combination of concentration-of-measure inequalities for the trajectory of the chain and coupling techniques.
In this paper we derive cumulant bounds for subgraph counts and power-weighted edge lengths in a class of spatial random networks known as weight-dependent random connection models. These bounds give rise to different probabilistic results, from which we mainly focus on moderate deviations of the respective statistics, but also show a concentration inequality and a normal approximation result. This involves dealing with long-range spatial correlations induced by the profile function and the weight distribution. We start by deriving the bounds for the classical case of a Poisson vertex set, and then provide extensions to α-determinantal processes.