To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a new class of heavy-tailed distributions for which any weighted average of independent and identically distributed random variables is larger than one such random variable in (usual) stochastic order. We show that many commonly used extremely heavy-tailed (i.e., infinite-mean) distributions, such as the Pareto, Fréchet, and Burr distributions, belong to this class. The established stochastic dominance relation can be further generalized to allow negatively dependent or non-identically distributed random variables. In particular, the weighted average of non-identically distributed random variables dominates their distribution mixtures in stochastic order.
Temporal variability and methodological differences in data normalization, among other factors, complicate effective trend analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater surveillance data and its alignment with coronavirus disease 2019 (COVID-19) clinical outcomes. As there is no consensus approach for these analyses yet, this study explored the use of piecewise linear trend analysis (joinpoint regression) to identify significant trends and trend turning points in SARS-CoV-2 RNA wastewater concentrations (normalized and non-normalized) and corresponding COVID-19 case rates in the greater Las Vegas metropolitan area (Nevada, USA) from mid-2020 to April 2023. The analysis period was stratified into three distinct phases based on temporal changes in testing protocols, vaccination availability, SARS-CoV-2 variant prevalence, and public health interventions. While other statistical methodologies may require fewer parameter specifications, joinpoint regression provided an interpretable framework for characterization and comparison of trends and trend turning points, revealing sewershed-specific variations in trend magnitude and timing that also aligned with known variant-driven waves. Week-level trend agreement corroborated previous findings demonstrating a close relationship between SARS-CoV-2 wastewater surveillance data and COVID-19 outcomes. These findings guide future applications of advanced statistical methodologies and support the continued integration of wastewater-based epidemiology as a complementary approach to traditional COVID-19 surveillance systems.
Human toxocariasis is a worldwide parasitic disease caused by zoonotic roundworms of the genus Toxocara, which can cause blindness and epilepsy. The aim of this study was to estimate the risk of food-borne transmission of Toxocara spp. to humans in the UK by developing mathematical models created in a Bayesian framework. Parameter estimation was based on published experimental studies and field data from southern England, with qPCR Cq values used as a measure of eggs in spinach portions and ELISA optical density data as an indirect measure of larvae in meat portions. The average human risk of Toxocara spp. infection, per portion consumed, was estimated as 0.016% (95% CI: 0.000–0.100%) for unwashed leafy vegetables and 0.172% (95% CI: 0.000–0.400%) for undercooked meat. The average proportion of meat portions estimated positive for Toxocara spp. larvae was 0.841% (95% CI: 0.300–1.400%), compared to 0.036% (95% CI: 0.000–0.200%) of spinach portions containing larvated Toxocara spp. eggs. Overall, the models estimated a low risk of infection with Toxocara spp. by consuming these foods. However, given the potentially severe human health consequences of toxocariasis, intervention strategies to reduce environmental contamination with Toxocara spp. eggs and correct food preparation are advised.
We prove an ergodic theorem for Markov chains indexed by the Ulam–Harris–Neveu tree over large subsets with arbitrary shape under two assumptions: (i) with high probability, two vertices in the large subset are far from each other, and (ii) with high probability, those two vertices have their common ancestor close to the root. The assumption on the common ancestor can be replaced by some regularity assumption on the Markov transition kernel. We verify that these assumptions are satisfied for some usual trees. Finally, with Markov chain Monte Carlo considerations in mind, we prove that when the underlying Markov chain is stationary and reversible, the Markov chain, that is the line graph, yields minimal variance for the empirical average estimator among trees with a given number of nodes. In doing so, we prove that the Hosoya–Wiener polynomial is minimized over $[{-}1,1]$ by the line graph among trees of a given size.
We analyse a Markovian SIR epidemic model where individuals either recover naturally or are diagnosed, leading to isolation and potential contact tracing. Our focus is on digital contact tracing via a tracing app, considering both its standalone use and its combination with manual tracing. We prove that as the population size n grows large, the epidemic process converges to a limiting process, which, unlike with typical epidemic models, is not a branching process due to dependencies created by contact tracing. However, by grouping to-be-traced individuals into macro-individuals, we derive a multi-type branching process interpretation, allowing computation of the reproduction number R. This is then converted to an individual reproduction number $R^\mathrm{(ind)}$, which, in contrast to R, decays monotonically with the fraction of app-users, while both share the same threshold at 1. Finally, we compare digital (only) contact tracing and manual (only) contact tracing, proving that the critical fraction of app-users, $\pi_{\mathrm{c}}$, required for $R=1$ is higher than the critical fraction manually contact-traced, $p_{\mathrm{c}}$, for manual tracing.
This chapter delves into the theory and application of reversible Markov Chain Monte Carlo (MCMC) algorithms, focusing on their role in Bayesian inference. It begins with the Metropolis–Hastings algorithm and explores variations such as component-wise updates, and the Metropolis-Adjusted Langevin Algorithm (MALA). The chapter also discusses Hamiltonian Monte Carlo (HMC) and the importance of scaling MCMC methods for high-dimensional models or large datasets. Key challenges in applying reversible MCMC to large-scale problems are addressed, with a focus on computational efficiency and algorithmic adjustments to improve scalability.
This chapter provides a comprehensive overview of the foundational concepts essential for scalable Bayesian learning and Monte Carlo methods. It introduces Monte Carlo integration and its relevance to Bayesian statistics, focusing on techniques such as importance sampling and control variates. The chapter outlines key applications, including logistic regression, Bayesian matrix factorization, and Bayesian neural networks, which serve as illustrative examples throughout the book. It also offers a primer on Markov chains and stochastic differential equations, which are critical for understanding the advanced methods discussed in later chapters. Additionally, the chapter introduces kernel methods in preparation for their application in scalable Markov Chain Monte Carlo (MCMC) diagnostics.
This chapter focuses on continuous-time MCMC algorithms, particularly those based on piecewise deterministic Markov processes (PDMPs). It introduces PDMPs as a scalable alternative to traditional MCMC, with a detailed explanation of their simulation, invariant distribution, and limiting processes. Various continuous-time samplers, including the bouncy particle sampler and zig-zag process, are compared in terms of efficiency and performance. The chapter also addresses practical aspects of simulating PDMPs, including techniques for exploiting model sparsity and data subsampling. Extensions to these methods, such as handling discontinuous target distributions or distributions defined on spaces of different dimensions, are discussed.