To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For an $N \times T$ random matrix $X(\beta )$ with weakly dependent uniformly sub-Gaussian entries $x_{it}(\beta )$ that may depend on a possibly infinite-dimensional parameter $\beta \in \mathbf {B}$, we obtain a uniform bound on its operator norm of the form $\mathbb {E} \sup _{\beta \in \mathbf {B}} ||X(\beta )|| \leq CK \left (\sqrt {\max (N,T)} + \gamma _2(\mathbf {B},d_{\mathbf {B}})\right )$, where C is an absolute constant, K controls the tail behavior of (the increments of) $x_{it}(\cdot )$, and $\gamma _2(\mathbf {B},d_{\mathbf {B}})$ is Talagrand’s functional, a measure of multiscale complexity of the metric space $(\mathbf {B},d_{\mathbf {B}})$. We illustrate how this result may be used for estimation that seeks to minimize the operator norm of moment conditions as well as for estimation of the maximal number of factors with functional data.
The weighted average quantile derivative (AQD) is the expected value of the partial derivative of the conditional quantile function (CQF) weighted by a function of the covariates. We consider two weighting functions: a known function chosen by researchers and the density function of the covariates that is parallel to the average mean derivative in Powell, Stock, and Stoker (1989, Econometrica 57, 1403–1430). The AQD summarizes the marginal response of the covariates on the CQF and defines a nonparametric quantile regression coefficient. In semiparametric single-index and partially linear models, the AQD identifies the coefficients up to scale. In nonparametric nonseparable structural models, the AQD conveys an average structural effect under certain independence assumptions. Including a stochastic trimming function, the proposed two-step estimator is root-n-consistent for the AQD defined by the entire support of the covariates. To facilitate tractable asymptotic analysis, a key preliminary result is a new Bahadur-type linear representation of the generalized inverse kernel-based CQF estimator uniformly over the covariates in an expanding compact set and over the quantile levels. The weak convergence to Gaussian processes applies to the differentiable nonlinear functionals of the quantile processes.
Antibiotic resistance (ABR) threatens the effectiveness of infectious disease treatments and contributes to increasing global morbidity and mortality. In this study, we systematically reviewed the identified risk factors for ABR among people in the healthcare system of mainland China. Five databases were systematically searched to identify relevant articles published in either English and Chinese between 1 January 2003 and 30 June 2019. A total of 176 facility-based references were reviewed for this study, ranging across 31 provinces in mainland China and reporting information from over 50 000 patients. Four major ABR risk factor domains were identified: (1) sociodemographic factors (includes migrant status, low income and urban residence), (2) patient clinical information (includes disease status and certain laboratory results), (3) admission to healthcare settings (includes length of hospitalisation and performance of invasive procedures) and (4) drug exposure (includes current or prior antibiotic therapy). ABR constitutes an ongoing major public health challenge in China. The healthcare sector-associated risk factors was the most important aspect identified in this review and need to be addressed. Primary health care system and ABR surveillance networks need to be further strengthened to prevent and control the communicable diseases, over-prescription and overuse of antibiotics.
This paper considers risk-sensitive average optimization for denumerable continuous-time Markov decision processes (CTMDPs), in which the transition and cost rates are allowed to be unbounded, and the policies can be randomized history dependent. We first derive the multiplicative dynamic programming principle and some new facts for risk-sensitive finite-horizon CTMDPs. Then, we establish the existence and uniqueness of a solution to the risk-sensitive average optimality equation (RS-AOE) through the results for risk-sensitive finite-horizon CTMDPs developed here, and also prove the existence of an optimal stationary policy via the RS-AOE. Furthermore, for the case of finite actions available at each state, we construct a sequence of models of finite-state CTMDPs with optimal stationary policies which can be obtained by a policy iteration algorithm in a finite number of iterations, and prove that an average optimal policy for the case of infinitely countable states can be approximated by those of the finite-state models. Finally, we illustrate the conditions and the iteration algorithm with an example.
In this paper we study a large system of N servers, each with capacity to process at most C simultaneous jobs; an incoming job is routed to a server if it has the lowest occupancy amongst d (out of N) randomly selected servers. A job that is routed to a server with no vacancy is assumed to be blocked and lost. Such randomized policies are referred to JSQ(d) (Join the Shortest Queue out of d) policies. Under the assumption that jobs arrive according to a Poisson process with rate $N\lambda^{(N)}$ where $\lambda^{(N)}=\sigma-\frac{\beta}{\sqrt{N}\,}$, $\sigma\in\mathbb{R}_+$ and $\beta\in\mathbb{R}$, we establish functional central limit theorems for the fluctuation process in both the transient and stationary regimes when service time distributions are exponential. In particular, we show that the limit is an Ornstein–Uhlenbeck process whose mean and variance depend on the mean field of the considered model. Using this, we obtain approximations to the blocking probabilities for large N, where we can precisely estimate the accuracy of first-order approximations.
Consider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob.33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.
We consider a gradual-impulse control problem of continuous-time Markov decision processes, where the system performance is measured by the expectation of the exponential utility of the total cost. We show, under natural conditions on the system primitives, the existence of a deterministic stationary optimal policy out of a more general class of policies that allow multiple simultaneous impulses, randomized selection of impulses with random effects, and accumulation of jumps. After characterizing the value function using the optimality equation, we reduce the gradual-impulse control problem to an equivalent simple discrete-time Markov decision process, whose action space is the union of the sets of gradual and impulsive actions.
The performance and effectiveness of an age replacement policy can be assessed by its mean time to failure (MTTF) function. We develop shock model theory in different scenarios for classes of life distributions based on the MTTF function where the probabilities $\bar{P}_k$ of surviving the first k shocks are assumed to have discrete DMTTF, IMTTF and IDMTTF properties. The cumulative damage model of A-Hameed and Proschan [1] is studied in this context and analogous results are established. Weak convergence and moment convergence issues within the IDMTTF class of life distributions are explored. The preservation of the IDMTTF property under some basic reliability operations is also investigated. Finally we show that the intersection of IDMRL and IDMTTF classes contains the BFR family and establish results outlining the positions of various non-monotonic ageing classes in the hierarchy.
Pitman (2003), and subsequently Gnedin and Pitman (2006), showed that a large class of random partitions of the integers derived from a stable subordinator of index $\alpha\in(0,1)$ have infinite Gibbs (product) structure as a characterizing feature. The most notable case are random partitions derived from the two-parameter Poisson–Dirichlet distribution, $\textrm{PD}(\alpha,\theta)$, whose corresponding $\alpha$-diversity/local time have generalized Mittag–Leffler distributions, denoted by $\textrm{ML}(\alpha,\theta)$. Our aim in this work is to provide indications on the utility of the wider class of Gibbs partitions as it relates to a study of Riemann–Liouville fractional integrals and size-biased sampling, and in decompositions of special functions, and its potential use in the understanding of various constructions of more exotic processes. We provide characterizations of general laws associated with nested families of $\textrm{PD}(\alpha,\theta)$ mass partitions that are constructed from fragmentation operations described in Dong et al. (2014). These operations are known to be related in distribution to various constructions of discrete random trees/graphs in [n], and their scaling limits. A centerpiece of our work is results related to Mittag–Leffler functions, which play a key role in fractional calculus and are otherwise Laplace transforms of the $\textrm{ML}(\alpha,\theta)$ variables. Notably, this leads to an interpretation within the context of $\textrm{PD}(\alpha,\theta)$ laws conditioned on Poisson point process counts over intervals of scaled lengths of the $\alpha$-diversity.
In open Kelly and Jackson networks, servers are assigned to individual stations, serving customers only where they are assigned. We investigate the performance of modified networks where servers cooperate. A server who would be idle at the assigned station will serve customers at another station, speeding up service there. We assume interchangeable servers: the service rate of a server at a station depends only on the station, not the server. This gives work conservation, which is used in various ways. We investigate three levels of server cooperation, from full cooperation, where all servers are busy when there is work to do anywhere in the network, to one-way cooperation, where a server assigned to one station may assist a server at another, but not the converse. We obtain the same stability conditions for each level and, in a series of examples, obtain substantial performance improvement with server cooperation, even when stations before modification are moderately loaded.
In this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson–Voronoi tessellation in the d-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition Z of these two processes, two points of Z are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0–1 law, a subcritical phase, and a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.
We consider stochastic differential equations of the form $dX_t = |f(X_t)|/t^{\gamma} dt+1/t^{\gamma} dB_t$, where f(x) behaves comparably to $|x|^k$ in a neighborhood of the origin, for $k\in [1,\infty)$. We show that there exists a threshold value $ \,{:}\,{\raise-1.5pt{=}}\, \tilde{\gamma}$ for $\gamma$, depending on k, such that if $\gamma \in (1/2, \tilde{\gamma})$, then $\mathbb{P}(X_t\rightarrow 0) = 0$, and for the rest of the permissible values of $\gamma$, $\mathbb{P}(X_t\rightarrow 0)>0$. These results extend to discrete processes that satisfy $X_{n+1}-X_n = f(X_n)/n^\gamma +Y_n/n^\gamma$. Here, $Y_{n+1}$ are martingale differences that are almost surely bounded.
This result shows that for a function F whose second derivative at degenerate saddle points is of polynomial order, it is always possible to escape saddle points via the iteration $X_{n+1}-X_n =F'(X_n)/n^\gamma +Y_n/n^\gamma$ for a suitable choice of $\gamma$.
We derive the large-sample distribution of the number of species in a version of Kingman’s Poisson–Dirichlet model constructed from an $\alpha$-stable subordinator but with an underlying negative binomial process instead of a Poisson process. Thus it depends on parameters $\alpha\in (0,1)$ from the subordinator and $r>0$ from the negative binomial process. The large-sample distribution of the number of species is derived as sample size $n\to\infty$. An important component in the derivation is the introduction of a two-parameter version of the Dickman distribution, generalising the existing one-parameter version. Our analysis adds to the range of Poisson–Dirichlet-related distributions available for modeling purposes.
We consider a stochastic matching model with a general compatibility graph, as introduced by Mairesse and Moyal (2016). We show that the natural necessary condition of stability of the system is also sufficient for the natural ‘first-come, first-matched’ matching policy. To do so, we derive the stationary distribution under a remarkable product form, by using an original dynamic reversibility property related to that of Adan, Bušić, Mairesse, and Weiss (2018) for the bipartite matching model.
There are two types of tempered stable (TS) based Ornstein–Uhlenbeck (OU) processes: (i) the OU-TS process, the OU process driven by a TS subordinator, and (ii) the TS-OU process, the OU process with TS marginal law. They have various applications in financial engineering and econometrics. In the literature, only the second type under the stationary assumption has an exact simulation algorithm. In this paper we develop a unified approach to exactly simulate both types without the stationary assumption. It is mainly based on the distributional decomposition of stochastic processes with the aid of an acceptance–rejection scheme. As the inverse Gaussian distribution is an important special case of TS distribution, we also provide tailored algorithms for the corresponding OU processes. Numerical experiments and tests are reported to demonstrate the accuracy and effectiveness of our algorithms, and some further extensions are also discussed.
The paper discusses the risk of ruin in insurance coverage of an epidemic in a closed population. The model studied is an extended susceptible–infective–removed (SIR) epidemic model built by Lefèvre and Simon (Methodology Comput. Appl. Prob.22, 2020) as a block-structured Markov process. A fluid component is then introduced to describe the premium amounts received and the care costs reimbursed by the insurance. Our interest is in the risk of collapse of the corresponding reserves of the company. The use of matrix-analytic methods allows us to determine the distribution of ruin time, the probability of ruin, and the final amount of reserves. The case where the reserves are subjected to a Brownian noise is also studied. Finally, some of the results obtained are illustrated for two particular standard SIR epidemic models.
Our aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.