To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We focus on the population dynamics driven by two classes of truncated $\alpha$-stable processes with Markovian switching. Almost necessary and sufficient conditions for the ergodicity of the proposed models are provided. Also, these results illustrate the impact on ergodicity and extinct conditions as the parameter $\alpha$ tends to 2.
For two n-dimensional elliptical random vectors X and Y, we establish an identity for $\mathbb{E}[f({\bf Y})]- \mathbb{E}[f({\bf X})]$, where $f\,{:}\, \mathbb{R}^n \rightarrow \mathbb{R}$ satisfies some regularity conditions. Using this identity we provide a unified method to derive sufficient and necessary conditions for classifying multivariate elliptical random vectors according to several main integral stochastic orders. As a consequence we obtain new inequalities by applying the method to multivariate elliptical distributions. The results generalize the corresponding ones for multivariate normal random vectors in the literature.
We develop a continuous-time Markov chain (CTMC) approximation of one-dimensional diffusions with sticky boundary or interior points. Approximate solutions to the action of the Feynman–Kac operator associated with a sticky diffusion and first passage probabilities are obtained using matrix exponentials. We show how to compute matrix exponentials efficiently and prove that a carefully designed scheme achieves second-order convergence. We also propose a scheme based on CTMC approximation for the simulation of sticky diffusions, for which the Euler scheme may completely fail. The efficiency of our method and its advantages over alternative approaches are illustrated in the context of bond pricing in a sticky short-rate model for a low-interest environment and option pricing under a geometric Brownian motion price model with a sticky interior point.
We analyze average-based distributed algorithms relying on simple and pairwise random interactions among a large and unknown number of anonymous agents. This allows the characterization of global properties emerging from these local interactions. Agents start with an initial integer value, and at each interaction keep the average integer part of both values as their new value. The convergence occurs when, with high probability, all the agents possess the same value, which means that they all know a property of the global system. Using a well-chosen stochastic coupling, we improve upon existing results by providing explicit and tight bounds on the convergence time. We apply these general results to both the proportion problem and the system size problem.
We investigate the impact of Knightian uncertainty on the optimal timing policy of an ambiguity-averse decision-maker in the case where the underlying factor dynamics follow a multidimensional Brownian motion and the exercise payoff depends on either a linear combination of the factors or the radial part of the driving factor dynamics. We present a general characterization of the value of the optimal timing policy and the worst-case measure in terms of a family of explicitly identified excessive functions generating an appropriate class of supermartingales. In line with previous findings based on linear diffusions, we find that ambiguity accelerates timing in comparison with the unambiguous setting. Somewhat surprisingly, we find that ambiguity may lead to stationarity in models which typically do not possess stationary behavior. In this way, our results indicate that ambiguity may act as a stabilizing mechanism.
For a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.
We consider a model of a stationary population with random size given by a continuous-state branching process with immigration with a quadratic branching mechanism. We give an exact elementary simulation procedure for the genealogical tree of n individuals randomly chosen among the extant population at a given time. Then we prove the convergence of the renormalized total length of this genealogical tree as n goes to infinity; see also Pfaffelhuber, Wakolbinger and Weisshaupt (2011) in the context of a constant-size population. The limit appears already in Bi and Delmas (2016) but with a different approximation of the full genealogical tree. The proof is based on the ancestral process of the extant population at a fixed time, which was defined by Aldous and Popovic (2005) in the critical case.
We study the transient and limiting behavior of a queue with a Pólya arrival process. The Pólya process is interesting because it exhibits path-dependent behavior, e.g. it satisfies a non-ergodic law of large numbers: the average number of arrivals over time [0, t] converges almost surely to a nondegenerate limit as $t \rightarrow \infty$. We establish a heavy-traffic diffusion limit for the $\sum_{i=1}^{n} P_i/GI/1$ queue, with arrivals occurring exogenously according to the superposition of n independent and identically distributed Pólya point processes. That limit yields a tractable approximation for the transient queue-length distribution, because the limiting net input process is a Gaussian Markov process with stationary increments. We also provide insight into the long-run performance of queues with path-dependent arrival processes. We show how Little’s law can be stated in this context, and we provide conditions under which there is stability for a queue with a Pólya arrival process.
Rough volatility is a well-established statistical stylized fact of financial assets. This property has led to the design and analysis of various new rough stochastic volatility models. However, most of these developments have been carried out in the mono-asset case. In this work, we show that some specific multivariate rough volatility models arise naturally from microstructural properties of the joint dynamics of asset prices. To do so, we use Hawkes processes to build microscopic models that accurately reproduce high-frequency cross-asset interactions and investigate their long-term scaling limits. We emphasize the relevance of our approach by providing insights on the role of microscopic features such as momentum and mean-reversion in the multidimensional price formation process. In particular, we recover classical properties of high-dimensional stock correlation matrices.
We provide upper and lower bounds for the mean $\mathscr{M}(H)$ of $\sup_{t\geq 0} \{B_H(t) - t\}$, with $B_H(\!\cdot\!)$ a zero-mean, variance-normalized version of fractional Brownian motion with Hurst parameter $H\in(0,1)$. We find bounds in (semi-) closed form, distinguishing between $H\in(0,\frac{1}{2}]$ and $H\in[\frac{1}{2},1)$, where in the former regime a numerical procedure is presented that drastically reduces the upper bound. For $H\in(0,\frac{1}{2}]$, the ratio between the upper and lower bound is bounded, whereas for $H\in[\frac{1}{2},1)$ the derived upper and lower bound have a strongly similar shape. We also derive a new upper bound for the mean of $\sup_{t\in[0,1]} B_H(t)$, $H\in(0,\frac{1}{2}]$, which is tight around $H=\frac{1}{2}$.
Recent work has demonstrated the use of sparse sensors in combination with the proper orthogonal decomposition (POD) to produce data-driven reconstructions of the full velocity fields in a variety of flows. The present work investigates the fidelity of such techniques applied to a stalled NACA 0012 aerofoil at $ {Re}_c=75,000 $ at an angle of attack $ \alpha ={12}^{\circ } $ as measured experimentally using planar time-resolved particle image velocimetry. In contrast to many previous studies, the flow is absent of any dominant shedding frequency and exhibits a broad range of singular values due to the turbulence in the separated region. Several reconstruction methodologies for linear state estimation based on classical compressed sensing and extended POD methodologies are presented as well as nonlinear refinement through the use of a shallow neural network (SNN). It is found that the linear reconstructions inspired by the extended POD are inferior to the compressed sensing approach provided that the sparse sensors avoid regions of the flow with small variance across the global POD basis. Regardless of the linear method used, the nonlinear SNN gives strikingly similar performance in its refinement of the reconstructions. The capability of sparse sensors to reconstruct separated turbulent flow measurements is further discussed and directions for future work suggested.
We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the controller to significantly accelerate the hitting and cover times in several natural graph classes. In particular, we show that the cover time becomes linear in the number n of vertices on discrete tori and bounded degree trees, of order $${\mathcal O}(n\log \log n)$$ on bounded degree expanders, and of order $${\mathcal O}(n{(\log \log n)^2})$$ on the Erdős–Rényi random graph in a certain sparsely connected regime. We also consider the algorithmic question of computing an optimal strategy and prove a dichotomy in efficiency between computing strategies for hitting and cover times.
Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to René Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).
The inverse of a noncentral Wishart matrix occurs in a variety of contexts in multivariate statistical work, including instrumental variable (IV) regression, but there has been very little work on its properties. In this paper, we first provide an expression for the expectation of the inverse of a noncentral Wishart matrix, and then go on to do the same for a number of scalar-valued functions of the inverse. The main result is obtained by exploiting simple but powerful group-equivariance properties of the expectation map involved. Subsequent results exploit the consequences of other invariance properties.