To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that if $A \subseteq [X,\,2X]$ and $B \subseteq [Y,\,2Y]$ are sets of integers such that gcd (a, b) ⩾ D for at least δ|A||B| pairs (a, b) ε A × B then $|A||B|{ \ll _{\rm{\varepsilon }}}{\delta ^{ - 2 - \varepsilon }}XY/{D^2}$. This is a new result even when δ = 1. The proof uses ideas of Koukoulopoulos and Maynard and some additional combinatorial arguments.
Deviations of asset prices from the random walk dynamic imply the predictability of asset returns and thus have important implications for portfolio construction and risk management. This paper proposes a real-time monitoring device for such deviations using intraday high-frequency data. The proposed procedures are based on unit root tests with in-fill asymptotics but extended to take the empirical features of high-frequency financial data (particularly jumps) into consideration. We derive the limiting distributions of the tests under both the null hypothesis of a random walk with jumps and the alternative of mean reversion/explosiveness with jumps. The limiting results show that ignoring the presence of jumps could potentially lead to severe size distortions of both the standard left-sided (against mean reversion) and right-sided (against explosiveness) unit root tests. The simulation results reveal satisfactory performance of the proposed tests even with data from a relatively short time span. As an illustration, we apply the procedure to the Nasdaq composite index at the 10-minute frequency over two periods: around the peak of the dot-com bubble and during the 2015–2106 stock market sell-off. We find strong evidence of explosiveness in asset prices in late 1999 and mean reversion in late 2015. We also show that accounting for jumps when testing the random walk hypothesis on intraday data is empirically relevant and that ignoring jumps can lead to different conclusions.
We consider the adaptive Lasso estimator with componentwise tuning in the framework of a low-dimensional linear regression model. In our setting, at least one of the components is penalized at the rate of consistent model selection and certain components may not be penalized at all. We perform a detailed study of the consistency properties and the asymptotic distribution which includes the effects of componentwise tuning within a so-called moving-parameter framework. These results enable us to explicitly provide a set $\mathcal {M}$ such that every open superset acts as a confidence set with uniform asymptotic coverage equal to 1, whereas removing an arbitrarily small open set along the boundary yields a confidence set with uniform asymptotic coverage equal to 0. The shape of the set $\mathcal {M}$ depends on the regressor matrix as well as the deviations within the componentwise tuning parameters. Our findings can be viewed as a broad generalization of Pötscher and Schneider (2009, Journal of Statistical Planning and Inference 139, 2775–2790; 2010, Electronic Journal of Statistics 4, 334–360), who considered distributional properties and confidence intervals based on components of the adaptive Lasso estimator for the case of orthogonal regressors.