Let   ${\mathcal C}[{\mathcal X}]$  be any class of operators on a Banach space
 ${\mathcal C}[{\mathcal X}]$  be any class of operators on a Banach space   ${\mathcal X}$ , and let
 ${\mathcal X}$ , and let   ${Holo}^{-1}({\mathcal C})$  denote the class of operators A for which there exists a holomorphic function f on a neighbourhood
 ${Holo}^{-1}({\mathcal C})$  denote the class of operators A for which there exists a holomorphic function f on a neighbourhood   ${\mathcal N}$  of the spectrum σ(A) of A such that f is non-constant on connected components of
 ${\mathcal N}$  of the spectrum σ(A) of A such that f is non-constant on connected components of   ${\mathcal N}$  and f(A) lies in
 ${\mathcal N}$  and f(A) lies in   ${\mathcal C}$ . Let
 ${\mathcal C}$ . Let   ${{\mathcal R}[{\mathcal X}]}$  denote the class of Riesz operators in
 ${{\mathcal R}[{\mathcal X}]}$  denote the class of Riesz operators in   ${{\mathcal B}[{\mathcal X}]}$ . This paper considers perturbation of operators
 ${{\mathcal B}[{\mathcal X}]}$ . This paper considers perturbation of operators   $A\in\Phi_{+}({\mathcal X})\Cup\Phi_{-}({\mathcal X})$  (the class of all upper or lower [semi] Fredholm operators) by commuting operators in
 $A\in\Phi_{+}({\mathcal X})\Cup\Phi_{-}({\mathcal X})$  (the class of all upper or lower [semi] Fredholm operators) by commuting operators in   $B\in{Holo}^{-1}({\mathcal R}[{\mathcal X}])$ . We prove (amongst other results) that if πB (B) = ∏m  i = 1(B − μi ) is Riesz, then there exist decompositions
 $B\in{Holo}^{-1}({\mathcal R}[{\mathcal X}])$ . We prove (amongst other results) that if πB (B) = ∏m  i = 1(B − μi ) is Riesz, then there exist decompositions   ${\mathcal X}=\oplus_{i=1}^m{{\mathcal X}_i}$  and
 ${\mathcal X}=\oplus_{i=1}^m{{\mathcal X}_i}$  and   $B=\oplus_{i=1}^m{B|_{{\mathcal X}_i}}=\oplus_{i=1}^m{B_i}$  such that: (i) If λ ≠ 0, then
 $B=\oplus_{i=1}^m{B|_{{\mathcal X}_i}}=\oplus_{i=1}^m{B_i}$  such that: (i) If λ ≠ 0, then   $\pi_B(A,\lambda)=\prod_{i=1}^m{(A-\lambda\mu_i)^{\alpha_i}} \in\Phi_{+}({\mathcal X})$  (resp.,
 $\pi_B(A,\lambda)=\prod_{i=1}^m{(A-\lambda\mu_i)^{\alpha_i}} \in\Phi_{+}({\mathcal X})$  (resp.,   $\in\Phi_{-}({\mathcal X})$ ) if and only if
 $\in\Phi_{-}({\mathcal X})$ ) if and only if   $A-\lambda B_0-\lambda\mu_i\in\Phi_{+}({\mathcal X})$  (resp.,
 $A-\lambda B_0-\lambda\mu_i\in\Phi_{+}({\mathcal X})$  (resp.,   $\in\Phi_{-}({\mathcal X})$ ), and (ii) (case λ = 0)
 $\in\Phi_{-}({\mathcal X})$ ), and (ii) (case λ = 0)   $A\in\Phi_{+}({\mathcal X})$  (resp.,
 $A\in\Phi_{+}({\mathcal X})$  (resp.,   $\in\Phi_{-}({\mathcal X})$ ) if and only if
 $\in\Phi_{-}({\mathcal X})$ ) if and only if   $A-B_0\in\Phi_{+}({\mathcal X})$  (resp.,
 $A-B_0\in\Phi_{+}({\mathcal X})$  (resp.,   $\in\Phi_{-}({\mathcal X})$ ), where B 0 = ⊕m  i = 1(Bi  − μi ); (iii) if
 $\in\Phi_{-}({\mathcal X})$ ), where B 0 = ⊕m  i = 1(Bi  − μi ); (iii) if   $\pi_B(A,\lambda)\in\Phi_{+}({\mathcal X})$  (resp.,
 $\pi_B(A,\lambda)\in\Phi_{+}({\mathcal X})$  (resp.,   $\in\Phi_{-}({\mathcal X})$ ) for some λ ≠ 0, then
 $\in\Phi_{-}({\mathcal X})$ ) for some λ ≠ 0, then   $A-\lambda B\in\Phi_{+}({\mathcal X})$  (resp.,
 $A-\lambda B\in\Phi_{+}({\mathcal X})$  (resp.,   $\in\Phi_{-}({\mathcal X})$ ).
 $\in\Phi_{-}({\mathcal X})$ ).