We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mafic chlorite from Benton, Arkansas was comminuted by rotary blending of a suspension, and the — 2 μm fraction separated by sedimentation in H2O. Droplets of suspension of the < 2 μm fraction were dried on a layer of Epoxy resin and then additional Epoxy was added and heat-cured at 48°C to form a resin sandwich. Cross-sections of 600–900 Å thickness were cut on a Reichert automated ultramicrotome. The sections were collected on standard electron microscope specimen screens, reinforced by vacuum evaporated C and examined by transmission electron microscopy (TEM). The Phillips EM 200 electron microscope was equipped with a “microgun” source to minimize heating of the specimen and to improve contrast and high resolution (HREM). Images of the (001) chlorite crystallographic planes spaced at 13·9Å intervals were visible on many of the particle sections. Imaging of the planes depended upon their being nearly parallel to the electron beam (within 0° 10’) and therefore, many particles which had other orientations did not show the 13·9Å image. Micrographs made before appreciable irradiation by the electron beam revealed images of fringes corresponding to the 7·22Å (002) spacing of chlorite. Loss of the 7·22 Å fringes and reinforcement of those at 13·9 A resulted from heating of the chlorite in the electron beam. This behavior is analogous to the well-known crystallographic effects of heating chlorite at 550–760°C.
A technique suitable for computer application has been developed whereby whole rock major element analyses are corrected for X-ray detectable nonclay minerals and used to set up simultaneous equations which are solved to give clay mineral abundances. A theoretical evaluation of the approach by graphical methods enables the intrinsic errors to be very clearly assessed. Errors are minimized when SiO2, A12O3, and K2O are used as variables but only slightly increased if total Fe2O3 + MgO is substituted for SiO2. Quartz and CO2 content are the only data normally required which cannot be determined by X-ray fluorescence.
Results compare favorably with estimates obtained by XRD and other methods, being more accurate than XRD and equally precise provided the rock does not contain clay minerals other than the kaolin group, the mica group, and chlorite. Errors are large when the clay mineral phases comprise more than 35% chlorite and as yet undetermined when smectite exceeds 10%.
The method is ideally suited to the analysis of large numbers of mudstones of fairly similar mineralogy especially where XRF equipment with direct output to a computer is available.
The sorption of anisole and some related aromatic ethers on the interlamellar surfaces of Cu(II) hectorite has been investigated by i.r. and e.s.r. spectroscopy. In addition to physical adsorption, anisole forms two distinct types of Cu(II) complexes which are analogous to the type I and II species previously reported for benzene-Cu(II) smectite systems. These complexes can be transformed to type I and II complexes of 4,4’-dimethoxybiphenyl. Possible mechanisms are proposed for the oxidation process. Butyl phenyl ether formed a type II complex with Cu(II)-hectorite, but no dimerization reaction was noted in this system. Phenyl ether and benzyl methyl ether form a type I π complex with Cu(II)-hectorite. No type II analog was noted. E.S.R. spectra of each of the type II ether-Cu(II)-hectorite systems showed a single, narrow band with g near the value expected for a “free spinning” electron. The type I phenyl ether and benzyl methyl ether complexes also exhibited this e.s.r. band. Ag(I) hectorite adsorbs anisole by forming exclusively a type I complex. Na(I) and Co(II) hectorite adsorb anisole by physical means only, indicating association with the silicate surface.
Clayey fragments colored deep bluish-green are widely found in glassy rhyolitic tuffs at Oya, Tochigi Prefecture. In room-air the color changes to black or gray within one hour and finally to brown in a few weeks. The fragments are composed of an intimate mixture of two kinds of smectite: a ferrous iron-rich smectite (IR) with b0 = 9·300 Å; and an iron-poor smectite(IP) with b0 = 9·030 Å. Microscopic examination shows a vesicular texture and that IR occurs at the core and IP at the marginal parts of each vesicle. Analysis by EPMA gave the following structural formulas: IR, (Na0·60K0·04Ca0·44) (Mg2·04Fe3·982+Al0·02) (Si6·36Al1·64)O20(OH)4; IP, (Na0·52K0·08Ca0·26) (Mg0·90Fe0·952+Al2·54) (Si7·66Al0·34)O20(OH)4. IR has a much larger amount of iron in trioctahedral sites than that found in any earlier data. Acid-dissolution data, infrared absorption spectra, Eh-values, and DTA and TG curves are also given. Ferrous iron in the structure is easily oxidized in room air with loss of protons from the clay hydroxyls and with contraction of the lattice. We call the IR before and after oxidation the ferrous and ferric forms, respectively, of iron-rich saponite. They strongly suggest the existence of the iron-analogue of saponite. On exposed weathered surfaces in the field, brown fragments tend to be differentiated into two parts: one light yellow montmorillonite-beidellite; the other a brown incrustation due to hisingerite.
Garnierite from the Tocantins Complex at Niquelandia, Brazil, is a 15Å, dioctahedral clay mineral, nickeliferous nontronite. The principal octahedral cations are Fe3+, Al and Ni. The ferric state of the iron has been verified by ESCA. Ni occupies both the octahedral site and an exchange site. The garnierite formed (and is still forming) by the weathering of nickeliferous pyroxenite. Although the garnierite is a secondary product of weathering, it undergoes further change as weathering progresses: Ni and silica decrease, Fe3+ and Al increase, and the color changes from bright yellow green to red brown. Eventual breakdown of the garnierite leaves mainly hydrated oxides of iron and aluminum.
The shrinkage of osmotically swollen natural and artificial blisters on vermiculite cleavages by exchange saturation with fixing cations such as Cs+, Rb+, NH4+, and K+ was investigated by replica electron microscopy. Incomplete collapse of either the natural or artificially produced blisters occurred with Cs+, Rb+, and NH4+ saturation, while K+ saturation completely collapsed the artificially produced blisters but not the natural blisters. The reason for incomplete collapse with Cs+, Rb+ and NH4+ was the incomplete replacement (trapping in the flakes) of interlayer hydrated cations such as Na+ shown by electron probe microanalysis. Much less trapping occurred with K+ saturation. Na+ entrapment increased with increasing size and decreasing hydration of cations, i.e. Cs+ >Rb+ >NH4+ >K+.
Semiquantitative determination of Na+, by electron probe microanalysis, in vermiculite flakes near the edge revealed that 1 N CsCl entrapped as much as 45·6 per cent while 1 N KCl entrapped only 7·5 per cent. In general, more Na+ was entrapped by 1 N solutions than by dilute solutions. With 0·01 N KCl solution, the Na+ entrapment was only 4·4 per cent. The amount of Na+ at the center of the macroflakes was less than at the edge, apparently as a result of more CEC at frayed edges and (or) because of incomplete diffusion of Na+ to the center. Shrinkage of artificial blisters by K+ could thus be attributed to its more effective removal of the interlayer hydrated cations, whereas the other fixing cations were less effective. Natural blisters on vermiculite from Libby, Montana were not completely collapsed even by K+, apparently because the layer charge density was too low in the blister areas.
Montmorillonite clay samples were coated with 16 m-equiv/g of clay or iron plus aluminum as hydrous oxides and aged 1 yr, in suspensions of pH 6 or 8. The magnesium exchange capacity (MgEC) decreased linearly with the amount of non-crystalline aluminum hydrous oxide associated with the clay. Eight to 16 m-equiv of iron per g of clay reduced the MgEC by 20 m-equiv/100g at pH 6, but did not affect the MgEC at pH 8. The quantity of non-crystalline aluminum associated with the clay depended on the suspension pH and aging time, and was unaffected by the coprecipitation of 8–16 m-equiv of iron hydrous oxide/g clay. The crystalline form of aluminum hydrous oxide depended on the suspension pH and was shown by X-ray diffraction to be gibbsite at pH 6 and bayerite at pH 8. Gibbsite and bayerite formed rapidly with a rate dependent on the suspension pH when excess non-crystalline aluminum hydrous oxides were present. The quantity of non-crystalline aluminum hydrous oxides remaining after one year in suspensions of iron hydrous oxides and montmorillonite varied from 2·3 m-equiv/g of montmorillonite at pH 8-4·0 m-equiv/g of montmorillonite at pH 6. Differential thermal analysis and MgEC measurements indicated some regular organization of the iron hydrous oxides, however, crystalline iron minerals were not detected by X-ray diffraction.
The decreasing preference of montmorillonite for K+ relative to Na+ as the clay adsorbs increasing amounts of K+ is shown to be the general rule for the exchange of strongly hydrating ions by weakly hydrating ions. Variability in the mass-action selectivity coefficient is interpreted in terms of a composition-dependent surface entropy, which is a function of the chemical properties of the exchanging ion as well as the nature of the adsorption sites. The generally used mass-action form of exchange equation may only be applicable to exchange systems in which both ions have solution-like mobility at the exchanger surface. It is suggested that experimental variables such as ionic strength can greatly influence the degree of fit of data to a given ion-exchange equation.
Integrated intensities of the fundamental modes of vibrations of ammonium in heat-treated, NH4+-exchanged swelling minerals permits (1) a quantitative determination of the amount of tetrahedral substitutions of Si4+ by M3+ in dioctahedral smectites, and (2) an estimate of the degree of interlayer surface heterogeneity in trioctahedral minerals to be made. This is possible because NH4+ cations balancing the negative charge of tetrahedral sites that are not influenced by an excess positive charge of the octahedral layer have a symmetry lower (probably C3v) than the usual tetrahedral Td symmetry of NH4+. In C3v symmetry the ν1 band is infrared active whereas it is only Raman active in Td symmetry. Protons left after deammoniating dioctahedral smectites with tetrahedral substitutions form interlayer silanol groups, the stretching vibration of which give a band that is distinct from that of octahedral OH-stretching modes.
The dispersion of clays is of great importance in determining various soil properties such as hydraulic conductivity. A procedure which involves fixing followed by embedding of clay particles in an epoxy resin is described. This procedure enables the observation of cross sections of clay tactoids under a transmittance electron microscope, and the determination of the number of plates per tactoid. The use of the procedure for the determination of the relation between the exchangeable sodium percentage (ESP) and tactoid size in suspensions of a Na/Ca bentonite system is presented. It was demonstrated that even at ESP 5 significant dispersion already occurs, the average number of plates per tactoid being 6.6 as compared to 16.1 at ESP 0.
Hydroxyl orientation has a major influence on the strength of the ionic interlayer bonding in micas because of the strong repulsion between the hydrogen and the interlayer cation (IC). In order to determine if other factors also influence the magnitude of the interlayer bond energy, the effect due to the varying H-IC distance, as one finds, for example, between a dioctahedral and a trioctahedral mica, must be removed. This can be done by calculating the bond energy as a function of the H-IC distance; a plot of which is a smooth curve with a minimum energy for the minimum H-IC distance. If there are no other factors which substantially contribute to the interlayer bonding energy, such curves for all micas should be superimposed. If, however, the curves are not superimposed but fall into groups with common attributes (stacking sequence, ionic substitutions, etc.) the energy separations between groups of curves indicate the influence of these other factors.
The results of such calculations for four dioctahedral micas (2M1 muscovite, 3T muscovite, and two 1M muscovites) and four trioctahedral micas (2M1 biotite, 1M phlogopite, 2M2 lepidolite and a 1M MgIV mica) indicate that these curves are at higher energy for dioctahedral than for trioctahedral micas and this energy increase is due to the filling of the octahedral sites. The dioctahedral micas are arranged in terms of energy as 1M ≥ 3T ≫ 2M1 while the order for the trioctahedral micas is 1M ≥ 2M1 ≅ 2M2. In addition, the calculated energies suggest that the distribution of the layer charge between the octahedral and tetrahedral sheets affects the strength of the interlayer bond such that the greater the charge on the octahedral sheet, the stronger the interlayer bond.