To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Negative relationships between the parental age and offspring life history traits have been widely observed across diverse animal taxa. However, there is a lack of studies examining the influence of parental age on offspring performance using mites, particularly phytoseiid predators as subjects. This study explored the influence of maternal age on offspring life history traits in Amblyseius herbicolus (Chant) (Acari: Mesostigmata), a phytoseiid predatory mite reproducing through thelytokous parthenogenesis. We hypothesised that increased maternal age negatively impacts offspring traits, including developmental duration, body size, fecundity and lifespan. Amblyseius herbicolus was reared under controlled laboratory conditions, and the life history traits of offspring from mothers of varying ages were analysed using linear mixed-effect models. Our results showed that the increase in maternal age significantly reduced individual egg volume, but did not significantly affect offspring developmental duration, body size, fecundity or lifespan. These findings indicate that while older A. herbicolus females produced smaller eggs, the subsequent performance (i.e. body size, fecundity and lifespan) of offspring remained largely unaffected, suggesting possible compensatory mechanisms in the offspring or alternative maternal provisioning strategies. The results of this study offer useful insights into the reproductive strategies of phytoseiid predators and asexually reproducing species, enhancing our understanding of how maternal age affects offspring fitness. Further studies can examine how offspring of A. herbicolus from mothers of different ages perform under adverse environmental conditions.
Experiments on the Richtmyer–Meshkov instability (RMI) in a dual driver vertical shock tube (DDVST) are described. An initially planar, stably stratified membraneless interface is formed by flowing air from above and sulfur hexafluoride from below the interface location using the method of Jones & Jacobs (Phys. Fluids, vol. 9, issue 1997, 1997, pp. 3078–3085). A random three-dimensional, multi-modal initial perturbation is imposed by vertically oscillating the gas column to produce Faraday waves. The DDVST design generates two shock waves, one originating above and one below the interface, with these shocks having independently controllable strengths and interface arrival times. The shock waves have nominal strengths of $M_L=1.17$ and $M_H=1.18$ for the shock wave originating in the light and heavy gas, respectively, with these strengths chosen to result in arrested bulk interface motion following reshock. The influence of the length of the shock-to-reshock time, as well as the order of shock arrival, on the post-reshock RMI is examined. The mixing layer width grows according to $h\propto t^\theta$, where $\theta _H=0.36\pm 0.018$ (95 %) and $\theta _L=0.38\pm 0.02$ (95 %) for heavy and light shock first experiments, respectively, indicating no strong dependence on the order of shock wave arrival. Volume integrated specific turbulent kinetic energy (TKE) in the mixing layer versus time is found to decay according to $E_{tot}/\bar {\rho }\propto t^p$ with $p_H=-0.823\pm 0.06$ (95 %) and $p_L=-1.061\pm 0.032$ (95 %) for heavy and light shock first experiments, respectively. Notably, the 95 % confidence intervals do not overlap. Analysis on the influence of the shock-to-reshock time on turbulent length scales, transition criteria, spectra and mixing layer anisotropy are also presented.
Human oocyte maturation is a lengthy process that takes place over the course of which oocytes gain the inherent ability to support the next developmental stages in a progressive manner. This process includes intricate and distinct events related to nuclear and cytoplasmic maturation. Nuclear maturation includes mostly chromosome segregation, whereas rearrangement of organelles, storage of mRNAs and transcription factors occur during cytoplasmic maturation.
Human oocyte maturation, both in vivo and in vitro, occurs through a process that is not yet fully understood. However, it is believed that the second messenger, cyclic adenosine monophosphate (cAMP), plays a pivotal role in the upkeep of the meiotic blocking of the human oocyte. Relatively high levels of cAMP in the human oocyte are required to maintain meiosis blocked, whereas lower levels of cAMP in the oocyte enable meiosis to resume. Oocyte cAMP concentration is controlled by a balance between adenylate cyclase and phosphodiesterases, the enzymes responsible for cAMP generation and breakdown.
In addition to nuclear maturation, the female gamete requires a number of complicated structural and biochemical modifications in the cytoplasmic compartment to be able to fertilize normally. According to ultrastructural studies, during the transition from the germinal vesicle stage to metaphase II (MII), several organelles reorganize their positions. The cytoskeletal microfilaments and microtubules found in the cytoplasm facilitate these movements and regulate chromosomal segregation.
The aim of this review is to focus on the nuclear and cytoplasmic maturation by investigating the changes that take place in the process of oocytes being competent for development.
One kind of good listener aspires to be sensitive to the testimony of injustice. Under conditions of oppression, this testimony is silenced. One cause of the silencing is that a dominant rights-based model of distributive justice interferes with our appreciation of a needs-based model of radically egalitarian justice. Another cause is that ambient prejudices threaten to impair the listener. A good listener is not only an individual but also a social animal, one who needs to engage with others in a dialectic of attention in order to undo their own prejudices.
We introduce the concept of ‘irrational paths’ for a given subshift and useit to characterize all minimal left ideals in the associated unital subshift algebra. Consequently, we characterize the socle as the sum of the ideals generated by irrational paths. Proceeding, we construct a graph such that the Leavitt path algebra of this graph is graded isomorphic to the socle. This realization allows us to show that the graded structure of the socle serves as an invariant for the conjugacy of Ott–Tomforde–Willis subshifts and for the isometric conjugacy of subshifts constructed with the product topology. Additionally, we establish that the socle of the unital subshift algebra is contained in the socle of the corresponding unital subshift C*-algebra.
I defend a referential anti-realist solution to the problem of intentional identity. I develop Nathan Salmon's referential realist solution to the problem — according to which mythical objects exist and we can refer to them by using mythical-object names — and consider David Braun's objections to it. I argue that Salmon's solution yields the real identity, rather than the intentional identity, of the objects of multiple subjects’ thoughts. And I develop a referential anti-realist variant of Salmon's view — according to which mythical objects do not exist nor are they otherwise real but we can nevertheless refer to them — which avoids this worry.
Italy often experiences major events, such as earthquakes, floods, and migrant shipwrecks. Current and future global challenges for health workers are made up by climate change, pandemics, and wars. In this work, we will assess the state-of-art of training and interest towards these challenges among Italian post-degree public health schools.
Methods
A cross-sectional survey was conducted in Italy in June 2023 among Italian public health residents. The study investigated training levels and updates regarding emergencies in Italian residencies. It also analyzed interest and importance of topic, impact of the COVID-19 pandemic, and sources of information.
Results
Of 289 respondents, 86.2% deemed the topic important and 74.4% expressed interest. 90.1% pointed out the lack of dedicated courses and 93.1% of specialized master’s programs. Perceived importance in the topic was associated with the desire to attend dedicated conferences. As for COVID-19, 24.6% recognized the importance of this topic pre-pandemic, while 50.9% raised awareness during the pandemic.
Conclusions
This survey shows the need for the offer of emergency training programs in Italian public health schools. Professionals in public health can make a great contribution to emergencies, not only in preparedness, but also in response and recovery phases.
The articles in this volume celebrate the work of Steven Burns. Versions of the articles were presented originally at two sessions organized in Burns's honour at the 2022 meeting of the Atlantic Regional Philosophers’ Association (ARPA), held at Dalhousie University in Halifax. This introduction presents a brief academic biography and summarizes each of the contributions. The articles, by Michael Hymers, Robbie Moser and Darren Bifford, Alice MacLachlan, Jason Holt, and Warren Heiti, address perennial themes in philosophy, such as self-knowledge, attention, friendship, interpretation, and judgement. The collection concludes with some last words by Burns himself.
In hypersonic flight the shock wave and turbulent boundary layer interaction (STBLI) sharply increases wall heat transfer that intensifies the aerodynamic heating problems. In this work the STBLI is modelled by compression ramp flow with a Mach number of 5, a Reynolds number based on momentum thickness of 4652 and a wall to recovery temperature ratio of 0.5. The aerodynamic heat generation and transport mechanisms are investigated in the interaction based on theoretical analysis and direct numerical simulation (DNS) that agrees with previous studies. A prediction correlation of wall heat flux in STBLI is deduced theoretically and validated by some representative data including the present DNS, which improves the prediction accuracy and can be applied to a wider $Ma$ range compared with the canonical Q-P theory. The correlation indicates that the sharp increase of wall heat transfer in the STBLI can be explained by the boundary layer compression and the convection transport enhancement. Based on the DNS results, the aerodynamic heat generation and transport mechanisms are revealed in the separation, recirculation and reattachment zones in the STBLI. From this perspective, the peak heat flux can be further explained by the enhancement of near-wall turbulent energy dissipation, compression aerodynamic heat generation and the near-wall turbulent transport. The generation and transport of compression aerodynamic heat reveal the underlying mechanism of the strong correlation between the peak heat flux ratios and the pressure ratios in STBLIs.
We present a simulation-based study of the effect of a passing wave packet on underlying fully developed turbulence. We propose a novel wave-phase-resolved simulation method inspired by Helmholtz decomposition to directly couple the turbulence simulation with instantaneous wave orbital motions without wave-phase averaging. We also introduce a boundary condition treatment for the turbulence at the wave surface, which allows the turbulence simulation to be conducted in a rectangular domain while retaining the wave-phase effect. The results obtained from the proposed method reveal considerable variations in turbulence statistics, including the enstrophy and Reynolds normal stresses, during wave packet passage. Most changes occur rapidly when the narrow bandwidth around the wave packet core passes. Further analyses of the energy spectra indicate that the enhancement of turbulence occurs across a wide range of scales, with the near-surface small-scale motions experiencing the most significant intensification. Meanwhile, large-scale motions with scales comparable to the boundary layer depth are also enhanced. The mechanisms underlying the Reynolds normal stress variation at different length scales are related to the energy transfer from the wave orbital straining to turbulence through production, the pressure–strain effect, the pressure diffusion and the wave advection. By assessing the turbulence statistics and dynamics impacted by a wave packet in detail, this study provides an improved understanding of the response of a developed turbulent flow to a transient wave field. The proposed simulation method also proves to be a promising phase-resolved approach for efficiently modelling the wave effect on turbulence.
In 2023, both Democratic and Republican elected officials supported banning official use of the gender-neutral term “Latinx.” Using a nationally representative survey sample, this study examines whether opposition to the gender-neutral term “Latinx” suggests a potential wedge issue that cuts across partisanship. We find that opposition to “Latinx” is significantly higher among Republican partisans, those who disapprove of Joe Biden as president, and those with “colder” feelings toward Democrats. Opposition to “Latinx” generally converges with factors that predict existing partisan divisions; where it diverges, it does not affect respondent evaluations of Biden or feelings about Democrats. Based on these findings, we conclude that gender-neutral language currently shows little potential as a wedge issue.
Chrono-medicine considers circadian biology in disease management, including combined lifestyle and medicine interventions. Exercise and nutritional interventions are well-known for their efficacy in managing type 2 diabetes, and metformin remains a widely used pharmacological agent. However, metformin may reduce exercise capacity and interfere with skeletal muscle adaptations, creating barriers to exercise adherence. Research into optimising the timing of exercise has shown promise, particularly for glycaemic management in people with type 2 diabetes. Aligning exercise timing with circadian rhythms and nutritional intake may maximise benefits. Nutritional timing also plays a crucial role in glycaemic control. Recent research suggests that not only what we eat but when we eat significantly impacts glycaemic control, with strategies like time-restricted feeding (TRF) showing promise in reducing caloric intake, improving glycaemic regulation and enhancing overall metabolic health. These findings suggest that meal timing could be an important adjunct to traditional dietary and exercise approaches in managing diabetes and related metabolic disorders. When taking a holistic view of Diabetes management and the diurnal environment, one must also consider the circadian biology of medicines. Metformin has a circadian profile in plasma, and our recent study suggests that morning exercise combined with pre-breakfast metformin intake reduces glycaemia more effectively than post-breakfast intake. In this review, we aim to explore the integration of circadian biology into type 2 diabetes management by examining the timing of exercise, nutrition and medication. In conclusion, chrono-medicine offers a promising, cost-effective strategy for managing type 2 diabetes. Integrating precision timing of exercise, nutrition and medication into treatment plans requires considering the entire diurnal environment, including lifestyle and occupational factors, to develop comprehensive, evidence-based healthcare strategies.
Radial unstable stratification is a potential source of turbulence in the cold regions of accretion disks. To investigate this thermal effect, here we focus on two-dimensional Rayleigh–Bénard convection in an annulus subject to radially dependent gravitational acceleration $g \propto 1/r$. Next to the Rayleigh number $Ra$ and Prandtl number $Pr$, the radius ratio $\eta$, defined as the ratio of inner and outer cylinder radii, is a crucial parameter governing the flow dynamics. Using direct numerical simulations for $Pr=1$ and $Ra$ in the range from $10^7$ to $10^{10}$, we explore how variations in $\eta$ influence the asymmetry in the flow field, particularly in the boundary layers. Our results show that in the studied parameter range, the flow is dominated by convective rolls and that the thermal boundary-layer (TBL) thickness ratio between the inner and outer boundaries varies as $\eta ^{1/2}$. This scaling is attributed to the equality of velocity scales in the inner ($u_i$) and outer ($u_o$) regions. We further derive that the temperature drops in the inner and outer TBLs scale as $1/(1+\eta ^{1/2})$ and $\eta ^{1/2}/(1+\eta ^{1/2})$, respectively. The scalings and the temperature drops are in perfect agreement with the numerical data.
In June 2022, the U.S. Supreme Court’s Dobbs ruling overturned Roe v. Wade, reversing the nearly 50-year-old landmark decision that affirmed a woman’s constitutional right to abortion. Several months later, voters turned out in record numbers for the 2022 midterms, though a widely predicted “Red Wave” vote did not materialize. There has since been speculation that overturning Roe v. Wade played a crucial role in the midterms, generating a “Blue Tsunami” or “Roevember” driven largely by young, pro-choice women voting out of self-interest. We posit instead that group empathy was the key motivational mechanism in the link between opposition to Dobbs and voter mobilization in that election. Analyzing data from an original national survey, we find that opposition to overturning Roe v. Wade did not directly affect one’s likelihood to vote unless one is empathic toward groups in distress. Such opposition was actually demobilizing for those low in empathy. The findings indicate group empathy serves as a catalyst for people to act on their opposition to policies that harm disadvantaged groups, in this case women as a marginalized political minority losing their constitutional right to bodily autonomy and access to reproductive care.
As the Mediterranean diet (MDi) has demonstrated a powerful preventative effect on various medical conditions, a positive effect on oral health may also be speculated. Tooth loss, pain or tooth mobility may discourage the consumption of specific food types, affecting MDi adherence. The aim of this study was to investigate the association between adherence to MDi and oral health in adult populations. The study protocol was registered in Open Science Framework (https://osf.io/vxbnh/) and adhered to PRISMA-ScR guidelines. The principal research questions were: (1) Does better oral health enable adults to better adhere to MDi? and (2) Does better adherence to MDi enable adult individuals to have better oral health? The content of three databases, Clarivate Analytics’ Web of Science, Scopus and PubMed was searched without language, date or any other restrictions. The search results were imported into the Rayyan environment, and from the initial 1127 studies identified, only 20 remained after the exclusion process. Three articles composed the first group, revealing significant associations between various oral health parameters and adherence to MDi, with large variations in methodology and no safe conclusions. The studies investigating the effect of the level of adherence to MDi on various oral parameters were more numerous and revealed negative associations with the prevalence of periodontal disease and upper aero-digestive tract cancer. Further studies to explore the existence and direction of the association between oral health and MDi are needed, with public health interventions encouraging adherence to the MDi to reduce the burden of oral conditions and other non-communicable diseases.
With the over-use of tetracycline (TC) and its ultimate accumulation in aquatic systems, the demand for TC removal from contaminated water is increasing due to its severe threat to public health. Clay minerals have attracted great attention as low-cost adsorbents for controlling water pollution. The objective of the present study was to measure the adsorption behavior and mechanisms of TC on allophane, a nanosized clay mineral with a hollow spherical structure; to highlight the advantage of the allophane nanostructure, a further objective was to compare allophane with halloysite and montmorillonite, which have nanostructures that differ from allophane. Structural features and surface physicochemical properties were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential, N2-physisorption, and acid–base titration. The adsorption data showed that TC adsorption followed the pseudo-second order and Langmuir models. The adsorption was pH dependent, as all three clay minerals performed better under neutral to weakly alkaline conditions and maintained high adsorption performance in the presence of co-existing Na+/K+/Ca2+/Mg2+ cations. Regeneration of the adsorbent was excellent, with efficiencies exceeding 75% after five recycles. By comparison, allophane always exhibited the greatest adsorption capacity, up to 796 mg g–1 at ~pH 9. The TC adsorption on allophane and halloysite was dominated by inner-sphere complexation, together with a small amount of electrostatic adsorption, while that on montmorillonite involved mainly interlayer cation exchange. The findings provide insights into the effects of nanostructures of clay minerals on their TC adsorption performance and highlight the huge potential of allophane as an efficient and inexpensive adsorbent for TC removal.