To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article is about the seminar held at Luiss University in Rome on 17 June 2024. The seminar focused on ‘The End of Christian Democracy: A New Direction for Research’ and was the first milestone and official launch of the PRIN research project ‘The End of Christian Democracy: The Collapse of a Political Dream – Voices from the Margins’, led by a consortium of four universities: Luiss, Roma Tre, Bologna and Suor Orsola Benincasa, Naples.
This paper empirically examines the dynamic relationship between stock market volatility and commodity prices through the time-varying risk aversion channel using daily data between December 31 in 1999 and June 14 in 2021. We employ a time-varying structural-form vector autoregressive model (VAR) model with (aggregate, sectoral and sixteen individual) commodity prices. The results suggest that the transmission mechanism of stock market volatility shocks on the commodity prices change over time. The negative effect of stock market volatility on commodity prices is more statistically significant in the 2008–09 Global Financial Crisis than that during the COVID-19 pandemic in 2020. Further, the effect is greater in energy commodities compared to the agricultural and metals markets. The long-lasting negative effect of risk aversion is stronger compared to that of the expected stock market volatility on the commodity price. The change in the stock-commodity transmission mechanism is likely due to changes in underlying sources of risk aversion and expected uncertainty over time.
This short contribution presents an enigmatic clay mould recovered from a tile kiln in Vindolanda's North Field. This complete mould contains an impression of Apollo in bust form, but its exact use is unclear. This paper presents the mould and discusses its potential use for the manufacture of ceramic figurines. Found in an industrial area of the site, its discovery also provides valuable evidence for craft production along this frontier and hints at a largely unknown provincial industry.
In this paper, we deal with a weighted eigenvalue problem for the anisotropic $(p,q)$-Laplacian with Dirichlet boundary conditions. We study the main properties of the first eigenvalue and a reverse Hölder type inequality for the corresponding eigenfunctions.
We extend the growth-at-risk (GaR) literature by examining US growth risks over 130 years using a time-varying parameter stochastic volatility regression model. This model effectively captures the distribution of GDP growth over long samples, accommodating changing relationships across variables and structural breaks. Our analysis offers several key insights for policymakers. We identify significant temporal variation in both the level and determinants of GaR. The stability of upside risks to GDP growth, as seen in previous research, is largely confined to the Great Moderation period, with a more balanced risk distribution prior to the 1970s. Additionally, the distribution of GDP growth has narrowed significantly since the end of the Bretton Woods system. Financial stress is consistently associated with higher downside risks, without affecting upside risks. Moreover, indicators such as credit growth and house prices influence both downside and upside risks during economic booms. Our findings also contribute to the financial cycle literature by providing a comprehensive view of the drivers and risks associated with economic booms and recessions over time.
Cementitious materials and their alkaline pore fluids can change the structure of bentonite used as a raw material for road embankments or concrete storage of garbage cans. This study investigated the alteration of montmorillonite-rich bentonite from northeast Morocco (Trebia deposit, Nador) in alkaline media rich in Ca2+, Mg2+, Na+, or K+. Specimens based on raw bentonite mixed with variable proportions of oxides (CaO, MgO) or hydroxides (NaOH, KOH) and water were prepared and aged for 28 days. Mineralogical composition by X-ray diffraction (XRD) was determined on raw bentonite and specimens to follow phase changes. Chemical composition and thermal characteristics were determined for raw bentonite and specimens by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Microstructural evolution and alteration of the external surface of bentonite were evaluated using scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) analysis. XRD results of bentonite-CaO mixture demonstrated the formation of gels (e.g. C-S-H) and calcite. When the amount of CaO added increased, excess portlandite and the precipitation of calcite in the outer surface of bentonite occurred, stopping pozzolanic reaction and consequently decreasing the compressive strength of specimens. On the other hand, the addition of MgO allowed the formation of brucite. Sodalite and cancrinite were neoformed with the addition of 32 wt.% NaOH after 28 days of hydration. The addition of hydroxides (NaOH or KOH) to bentonite did not reveal any setting due to the absence of the formation of cementitious phases.
Polyaenus (Strat. 8.23.5) includes an armoured elephant in his description of Julius Caesar crossing a defended ford in Britain (54 b.c.) – something found nowhere in Caesar's own Bellum Gallicum. From looking at a range of loci in the Strategica dealing with Caesar's military exploits in Celtic lands, it becomes clear that, instead of being the remnant of a now-lost source tradition, Polyaenus either based the elephant vignette on an underlying narrative structure provided by the Bellum Gallicum, or a source using this work very closely. Given the overall unlikelihood of Caesar taking an elephant to Britain, Polyaenus probably inserted an elephant for rhetorical and/or didactic purposes and was perhaps influenced by Caesar's own non-literary propaganda involving elephants.
We propose a novel time-asymptotically stable, implicit–explicit, adaptive, time integration method (denoted by the $\theta $-method) for the solution of the fractional advection–diffusion-reaction (FADR) equations. The spectral analysis of the method (involving the group velocity and the phase speed) indicates a region of favourable dispersion for a limited range of Péclet number. The numerical inversion of the coefficient matrix is avoided by exploiting the sparse structure of the matrix in the iterative solver for the Poisson equation. The accuracy and the efficacy of the method is benchmarked using (a) the two-dimensional fractional diffusion equation, originally proposed by researchers earlier, and (b) the incompressible, subdiffusive dynamics of a planar viscoelastic channel flow of the Rouse chain melts (FADR equation with fractional time-derivative of order ) and the Zimm chain solution (). Numerical simulations of the viscoelastic channel flow effectively capture the nonhomogeneous regions of high viscosity at low fluid inertia (or the so-called “spatiotemporal macrostructures”), experimentally observed in the flow-instability transition of subdiffusive flows.
Mungbean (Vigna radiata (L.) Wilczek), also known as greengram, is the most widely cultivated Asian Vigna species. Improved mungbean cultivars have a narrow genetic base that limits yield potential and they are poorly adapted to varying growth conditions in different agro-ecological conditions. The genetic potential of landrace germplasm accessions in gene- banks therefore needs to be better exploited. Germplasm core collections are made of a reduced set of representative accessions from the entire diversity maintained by genebanks. This subset of accessions can be used for testing general combining ability with local germplasm in the search for yield enhancement. Core collections also help breeders in selecting parental material that could maximize potential genetic gain from derived hybrid populations. At the National Bureau of Plant Genetic Resources (NBPGR), India, genetic enhancement/pre- breeding studies in mungbean have been initiated involving diverse parents mainly from the cultivated gene pool, using the Bureau's core collection as starting material. Germplasm enhancement aims at widening the genetic base of breeding materials by transferring desired genes from unimproved germplasm into enhanced varieties. Mild and decentralized selected material was maintained in target sites across the country. A total of 102 progenies were advanced to F5 for further selection and use by the breeders in Delhi. The genetic potential of a few selected enhanced progenies with desired plant types and better yield-related traits is presented in this paper. The study clearly demonstrates the potential of germplasm accessions conserved in genebanks for use in large-scale base-broadening efforts in mungbean.
The Marangoni flow induced by an insoluble surfactant on a fluid–fluid interface is a fundamental problem investigated extensively due to its implications in colloid science, biology, the environment and industrial applications. Here, we study the limit of a deep liquid subphase with negligible inertia (low Reynolds number, $Re\ll {1}$), where the two-dimensional problem has been shown to be described by the complex Burgers equation. We analyse the problem through a self-similar formulation, providing further insights into its structure and revealing its universal features. Six different similarity solutions are found. One of the solutions includes surfactant diffusion, whereas the other five, which are identified through a phase-plane formalism, hold only in the limit of negligible diffusion (high surface Péclet number $Pe_s\gg {1}$). Surfactant ‘pulses’, with a locally higher concentration that spreads outward, lead to two similarity solutions of the first kind with a similarity exponent $\beta =1/2$. On the other hand, distributions that are locally depleted and flow inwards lead to similarity of the second kind, with two different exponents that we obtain exactly using stability arguments. We distinguish between ‘dimple’ solutions, where the surfactant has a quadratic minimum and $\beta =2$, from ‘hole’ solutions, where the concentration profile is flatter than quadratic and $\beta =3/2$. Each of these two cases exhibits two similarity solutions, one valid prior to a critical time $t_*$ when the derivative of the concentration is singular, and another one valid after $t_*$. We obtain all six solutions in closed form, and discuss predictions that can be extracted from these results.
The tension distribution problem of cable-driven parallel robots is inevitable in real-time control. Currently, iterative algorithms or geometric algorithms are commonly used to solve this problem. Iterative algorithms are difficult to improve in real-time performance, and the tension obtained by geometric algorithms may not be continuous. In this paper, a novel tension distribution method for four-cable, 3-DOF cable-driven parallel robots is proposed based on the wave equation. The tension calculated by this method is continuous and differentiable, without the need for iterative computation or geometric centroid calculations, thus exhibiting good real-time performance. Furthermore, the feasibility and rationality of this algorithm are theoretically proven. Finally, the real-time performance and continuity of cable tension are analyzed through a specific numerical example.
In this essay, I recount the history of the founding and early years of the Journal of Law and Religion from its origins in the Committee on Religion and Law through the editorial transitions in 1988 that led to a second phase of JLR’s history. In recounting this history, I focus on the exceptional scholars who brought JLR into existence and nurtured its growth during those early years, creating, in the process, not only new academic endeavor but a community and a kind of family.
This paper analyzes inequities in the distribution of air pollution in Mexico at the detailed scale of localities. We find that air pollution increases in areas that experience a decline in socioeconomic status. We utilize 15 years of remote sensing data on fine particulate matter (smaller than 2.5 microns) for more than 116,500 localities across Mexico. Our panel data models show that localities that face a decline in socioeconomic status experience a 0.24–0.83 per cent increase in annual mean pollution concentrations. Our results hold up to controlling for changes within each municipality and instrumenting with broader municipality level socioeconomic status to test for ecological fallacy. We find that local air pollution inequities are reduced by political participation channels, but not as much by increased share of manufacturing activities due to polluters locating in poorer neighborhoods. Highly dense, urban municipalities witness higher inequities most likely due to traffic, construction, and agricultural fires.
It is well known that buoyancy suppresses, and can even laminarise, turbulence in upward heated pipe flow. Heat transfer seriously deteriorates in this case. A new direct numerical simulation model is established to simulate flow-dependent heat transfer in an upward heated pipe. The model shows good agreement with experimental results. Three flow states are simulated for different values of the buoyancy parameter $C$: shear turbulence, laminarisation and convective turbulence. The latter two regimes correspond to the heat transfer deterioration regime and the heat transfer recovery regime, respectively (Jackson & Li 2002; Bae et al., Phys. Fluids, vol. 17, issue 10, 2005; Zhang et al., Appl. Energy, vol. 269, 2020, 114962). We confirm that convective turbulence is driven by a linear instability (Su & Chung, J. Fluid Mech., vol. 422, 2000, pp. 141–166) and that the deteriorated heat transfer within convective turbulence is related to a lack of rolls near the wall, which leads to weak mixing between the flow near the wall and the centre of the pipe. Having surveyed the fundamental properties of the system, we perform a nonlinear non-modal stability analysis, which seeks the minimal perturbation that triggers a transition from the laminar state. Given the differences between shear and convective turbulence, we aim to determine how the nonlinear optimal (NLOP) changes as the buoyancy parameter $C$ increases. We find that at first, the NLOP becomes thinner and closer to the wall. Most importantly, the critical initial energy $E_0$ required to trigger turbulence keeps increasing, implying that attempts to trigger it artificially may not be an efficient means to improve heat transfer at larger $C$. At $C=6$, a new type of NLOP is discovered, capable of triggering convective turbulence from lower energy, but over a longer time. It is active only in the centre of the pipe. We next compare the transition processes, from linear instability and by the nonlinear non-modal excitation. At $C=4$, linear instability leads to a state that approaches a travelling wave solution or periodic solutions, while the minimal seed triggers shear turbulence before decaying to convective turbulence. Deeper into the parameter space for convective turbulence, at $C=6$, the new nonlinear optimal triggers convective turbulence directly. Detailed analysis of the periodic solution at $C=4$ reveals three stages: growth of the unstable eigenfunction, the formation of streaks, and the decay of the streaks. The stages of the cycle correspond to changes in the linear instability of the turbulent mean velocity profile. Unlike the self-sustaining process for classical shear flows, where the streak is disrupted via instability, here, decay of the streak is more closely linked to suppression of the linear instability of the mean flow, and hence suppression of the rolls. Flow visualisations at $C$ up to $10$ also show similar processes, suggesting that the convective turbulence in the heat transfer recovery regime is sustained by these three typical processes.
A functional traits approach was adopted to examine patterns of fish diversity in relation to environmental and spatial variables and for comparison with findings from earlier analyses of fish taxonomic diversity in a nearly pristine river in the Llanos region of Colombia. Fishes were surveyed during the low-water period at 34 sites along the longitudinal fluvial gradient of the Bita River, a clearwater tributary of the Orinoco River. We compiled a matrix of 37 traits associated with locomotion, feeding, and defense for 132 species to compute functional β diversity metrics among four reaches along the entire longitudinal fluvial gradient and also within reaches. Functional redundancy (trait under-dispersion) was found to be common throughout the fluvial gradient. Functional β diversity was high at both spatial scales, with widespread evidence of functional nestedness and functional turnover, especially in upper reaches. In the Bita River, environmental filtering and stochastic processes, such as random dispersal, appear to be the dominant mechanisms influencing fish functional diversity. Inferences derived from analysis of functional versus taxonomic diversity are largely congruent, although analysis of functional β diversity found more evidence of nestedness than turnover at both spatial scales. Both lines of evidence stress the importance of habitat heterogeneity and aquatic habitat connectivity for conservation of high species diversity in this system.
The rising demand for air traffic will inevitably result in a surge in both the number and complexity of flight conflicts, necessitating intelligent strategies for conflict resolution. This study addresses the critical challenges of scalability and real-time performance in multi-aircraft flight conflict resolution by proposing a comprehensive method that integrates a priority ranking mechanism with a conflict resolution model based on the Markov decision process (MDP). Within this framework, the proximity between aircraft in a multi-aircraft conflict set is dynamically assessed to establish a conflict resolution ranking mechanism. The problem of multi-aircraft conflict resolution is formalised through the MDP, encompassing the design of state space, discrete action space and reward function, with the transition function implemented via simulation prediction using model-free methods. To address the positional uncertainty of aircraft in real-time scenarios, the conflict detection mechanism introduces the aircraft’s positional error. A deep reinforcement learning (DRL) environment is constructed incorporating actual airspace structures and traffic densities, leveraging the Actor Critic using Kronecker-factored Trust Region (ACKTR) algorithm to determine resolution actions. The experimental results indicate that with 20–30 aircraft in the airspace, the success rate can reach 94% for the training set and 85% for the test set. Furthermore, this study analyses the impact of varying aircraft numbers on the success rate within a specific airspace scenario. The outcomes of this research provide valuable insights for the automation of flight conflict resolution.
A series of papers by Hickey (1982, 1983, 1984) presents a stochastic ordering based on randomness. This paper extends the results by introducing a novel methodology to derive models that preserve stochastic ordering based on randomness. We achieve this by presenting a new family of pseudometric spaces based on a majorization property. This class of pseudometrics provides a new methodology for deriving the randomness measure of a random variable. Using this, the paper introduces the Gini randomness measure and states its essential properties. We demonstrate that the proposed measure has certain advantages over entropy measures. The measure satisfies the value validity property, provides an adequate extension to continuous random variables, and is often more appropriate (based on sensitivity) than entropy in various scenarios.