To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In order to improve the global convergence performance of the super-twisting sliding mode control (STSMC) for the uncertain hybrid mechanism, especially in the high-speed scenario, and enhance the robustness of hybrid mechanism system to the uncertainties with a wide range of changes, an intelligent fixed-time super-twisting sliding mode control (IFTSTSMC) is proposed. Firstly, a fixed-time super-twisting sliding mode control (FTSTSMC) algorithm is designed by adding the exponential power terms with the fixed-time performance parameters in sliding variables and the transcendental function of the super-twisting algorithm in order to enhance the global convergence performance of the STSMC. Secondly, the existence condition of FTSTSMC for the uncertain hybrid mechanism is analyzed. The IFTSTSMC is designed by introducing RBF neural network to break through the limited range of uncertainties in FTSTSMC and enhance the robustness of hybrid mechanism system to the uncertainties with a wide range of changes. Then, the Lyapunov stability of the proposed method and the global fixed-time convergence of the system are proved theoretically. Finally, the effectiveness and superiority of the proposed control method are verified by the simulation and the automobile electro-coating conveying prototype experiment comparing with two classical finite-time sliding mode control methods.
This study provides a first empirical test of Margaret Canovan's influential argument on the relationship between democracy and populism, which posits that populism emerges as a consequence of the unresolved conflict between the pragmatic and redemptive faces of democracy. Despite its impact on scholars of populism, the implications of her framework remain untested. Using data from the EVS/WVS Integrated Values Surveys, we test Canovan's claims about the effect of ‘pragmatic politics’ on support for populist parties, operationalized as consensual democracies, economic and political globalization, and checks on government. Our analyses predominantly reveal no significant effects, and where significant results are observed, they indicate directions contrary to Canovan's claims, thus providing no empirical support for her claims. These results challenge long-standing assumptions about the relationship between populism and democracy, urging scholars to reevaluate existing assumptions and explore this intricate connection further. We conclude by suggesting some directions for future research to deepen our understanding of populism.
We propose a monotone approximation scheme for a class of fully nonlinear degenerate partial integro-differential equations which characterize nonlinear $\alpha$-stable Lévy processes under a sublinear expectation space with $\alpha\in(1,2)$. We further establish the error bounds for the monotone approximation scheme. This in turn yields an explicit Berry–Esseen bound and convergence rate for the $\alpha$-stable central limit theorem under sublinear expectation.
Failing Fontan poses a significant clinical challenge. This study aims to improve patients’ outcomes by comprehensively understanding the incidence, pathophysiology, risk factors, and treatment of failing Fontan after total cavopulmonary connection.
Methods:
We performed a retrospective analysis of patients who underwent total cavopulmonary connection at the German Heart Center Munich between 1994 and 2022. The onset of failing Fontan was defined as: protein-losing enteropathy, plastic bronchitis, NYHA class IV, NYHA class III for > one year, unscheduled hospital admissions for heart failure symptoms, and evaluation for heart transplantation.
Results:
Among 634 patients, 76 patients presented with failing Fontan, and the incidence was 1.48 per 100 patient-years. Manifestations included protein-losing enteropathy (n = 34), hospital readmission (n = 28), NYHA III (n = 18), plastic bronchitis (n = 16), evaluation for heart transplantation (n = 14), and NYHA IV (n = 4). Risk factors for the onset of failing Fontan were dominant right ventricle (p = 0.010) and higher pulmonary artery pressure before total cavopulmonary connection (p = 0.004). A total of 72 interventions were performed in 59 patients, including balloon dilatation/stent implantation in the total cavopulmonary connection pathway (n = 49) and embolization of collaterals (n = 24). Heart transplantation was performed in four patients. The survival after the onset of Fontan failure was 77% at 10 years. Patients with failing Fontan revealed significantly higher zlog-NT-proBNP levels after onset compared to those without (p = 0.021)
Conclusions:
The incidence of Fontan failure was 1.5 per 100 patient years. Dominant right ventricle and higher pulmonary artery pressure before total cavopulmonary connection were significant risks for the onset of failing Fontan. Zlog-NT-proBNP is only a late marker of Fontan failure.
In this paper we consider the workload of a storage system with the unconventional feature that the arrival times, rather than the interarrival times, are independent and identically distributed samples from a given distribution. We start by analyzing the ‘base model’ in which the arrival times are exponentially distributed, leading to a closed-form characterization of the queue’s workload at a given moment in time (i.e. in terms of Laplace–Stieltjes transforms), assuming the initial workload was 0. Then we consider four more general models, each of them having a specific additional feature: (a) the initial workload being allowed to have any arbitrary non-negative value, (b) an additional stream of Poisson arrivals, (c) phase-type arrival times, (d) balking customers. For all four variants the transform of the transient workload is identified in closed form.
This review essay explores the complex subject of peace in Africa by reviewing six volumes. While the African Union and the United Nations identify peace as providing the foundation for development, the quest for sustainable peace in regions of postcolonial Africa has remained elusive. Several works have sought to examine the contemporary pathways to peace currently being explored on the continent. The works under review must be located in this search for sustainable peace in Africa.
Since its inception in England and Wales, the partial defence to murder of loss of control has generated a steady stream of appeals. Individually, those appeals have illuminated key aspects of the plea's operation. This paper, though, is the first to explore that operation via a systematic analysis of every loss of control appeal to date (110 cases). Using that data, the paper frames more effectively, and thus improves understanding of, a neglected phenomenon in the plea: specifically, the decision-making roles of criminal justice ‘gatekeepers’ – principally trial judges, juries and prosecutors – in governing access to loss of control. In doing so, the paper assesses how far these gatekeepers interpret the plea's requirements in a ‘civilising’ way – one which prioritises meritorious loss of control claims above those which are unmeritorious. It contends that each gatekeeper struggles to regulate loss of control in such a way. Ultimately, this diminishes the symbolic value these reforms may have had and frustrates any civilising potential of homicide law reform.
We provide a general recursive method for constructing transfer systems on finite lattices. Using this, we calculate the number of homotopically distinct $N_{\infty} $ operads for dihedral groups $D_{p^n}$, $p \gt 2$ prime, and cyclic groups $C_{qp^n}$, $p \neq q$ prime. We then further display some of the beautiful combinatorics obtained by restricting to certain homotopically meaningful $N_\infty$ operads for these groups.
In Republican China, the Factory Act was first promulgated in 1929, after almost thirty years of unregulated industrialization. Little academic effort has been made to comprehend its actual implementation. Some academics have dismissed it as completely useless, while others have credited it with various enhancements in working conditions. This article focuses on workplace health and safety issues and critically evaluates the implementation of the law to scrutinize its effectiveness (or ineffectiveness) in addressing workers’ life and death matters. This article aims to reassert the Factory Act in China's modern history of industrial development. It points out that despite its inadequate enforcement, the law was significant in laying the foundation for the national institutionalization of state responsibility to systematically monitor and regulate workplace health and safety and paving the way for further safety legislation. Nevertheless, the law fell short of safeguarding workers’ rights during industrial accidents.
Bidirectional cavopulmonary anastomosis is palliative surgical procedure for stepwise adaptation of the ventricle by time-phased relief of blood volume from the single functional ventricle. There still exists a controversial question regarding maintaining additional antegrade pulmonary blood flow. We retrospectively reviewed the surgical cases of 261 patients who underwent bidirectional cavopulmonary anastomosis in our institution from 2012 to 2022 with special regard to antegrade pulmonary blood flow as our preferred strategy. The mean age at the time of surgery was 33.1 months (range 2.9–192 months), and the mean weight was – 7.6 kg (range 3.9–38 kg). Furthermore, we divided all the patients into two groups: in group 1 (n = 182) – patients who underwent bidirectional cavopulmonary anastomosis with antegrade pulmonary blood flow, and in group 2 (n = 47) – patients without antegrade pulmonary blood flow. The mean follow-up time was 56 months (range 24–120 months). Mortality rate was 4.8 % (n = 11) in the past 10 years. Statistical difference between groups was in the following positions: group 2 had less ICU stay (p < 0.000125) and hospital stay (p < 0.017110); group 1 had a longer duration of pleural effusion (p < 0.000003) and amount of drainage output (p < 0.007), also demonstrated higher oxygen saturation (p < 0.000264) and Glenn shunt pressure (p < 0.002) after the surgery; but there was no difference in oxygen saturation after 6, 12, and 24 months; mortality in both groups has no statistic difference. Considering our experience, we take a stand on the controlled to antegrade pulmonary blood flow strategy during bidirectional cavopulmonary anastomosis.
We conducted a retrospective cohort study in Ontario, Canada between December 1, 2020 and June 31, 2021 to compare the incidence of neurological events (hospitalization or emergency room visit) within six weeks of COVID-19 vaccination in Chinese, South Asian and Other ethnic groups. Compared to Others, the crude rates after the first dose for Bell’s palsy, ischemic stroke and intracerebral hemorrhage were lower in Chinese (34, 159 and 48 per 1,000,000 doses) and in South Asians (44, 148 and 32), but similar after adjusting for age, sex and vaccine type. Our findings should help encourage vaccination for all, irrespective of ethnicity.
We study the dynamics of thermal and momentum boundary regions in three-dimensional direct numerical simulations of Rayleigh–Bénard convection for the Rayleigh-number range $10^5\leq Ra \leq 10^{11}$ and $Pr=0.7$. Using a Cartesian slab with horizontal periodic boundary conditions and an aspect ratio of 4, we obtain statistical homogeneity in the horizontal $x$- and $y$-directions, thus approximating best an extended convection layer relevant for most geo- and astrophysical flow applications. We observe upon canonical use of combined long-time and area averages, with averaging periods of at least 100 free-fall times, that a global coherent mean flow is practically absent and that the magnitude of the velocity fluctuations is larger than the mean by up to 2 orders of magnitude. The velocity field close to the wall is a collection of differently oriented local shear-dominated flow patches interspersed by extensive shear-free incoherent regions which can be as large as the whole cross-section, unlike for a closed cylindrical convection cell of aspect ratio of the order 1. The incoherent regions occupy a 60 % area fraction for all Rayleigh numbers investigated here. Rather than resulting in a pronounced mean flow with small fluctuations about such a mean, as found in small-aspect-ratio convection, the velocity field is dominated by strong fluctuations of all three components around a non-existent or weak mean. We discuss the consequences of these observations for convection layers with larger aspect ratios, including boundary layer instabilities and the resulting turbulent heat transport.
To address the issues of low positioning accuracy and weak robustness of prior visual simultaneous localization and mapping (VSLAM) systems in dynamic environments, a semantic VSLAM (Sem-VSLAM) approach based on deep learning is proposed in this article. The proposed Sem-VSLAM algorithm adds semantic segmentation threads in parallel based on the open-source ORB-SLAM2’s visual odometry. First, while extracting the ORB features from an RGB-D image, the frame image is semantically segmented, and the segmented results are detected and repaired. Then, the feature points of dynamic objects are eliminated by using semantic information and motion consistency detection, and the poses are estimated by using the remaining feature points after the dynamic feature elimination. Finally, a 3D point cloud map is constructed by using tracking information and semantic information. The experiment uses Technical University of Munich public data to show the usefulness of the Sem-VSLAM algorithm. The experimental results show that the Sem-VSLAM algorithm can reduce the absolute trajectory error and relative attitude error of attitude estimation by about 95% compared to the ORB-SLAM2 algorithm and by about 14% compared to the VO-YOLOv5s in a highly dynamic environment and the average time consumption of tracking each frame image reaches 61 ms. It is verified that the Sem-VSLAM algorithm effectively improves the robustness and positioning accuracy in high dynamic environment and owning a satisfying real-time performance. Therefore, the Sem-VSLAM has a better mapping effect in a highly dynamic environment.