To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two-dimensional compressible flows in radial equilibrium are investigated in the ideal dilute-gas regime and the non-ideal single-phase regime close to the liquid–vapour saturation curve and the critical point. Radial equilibrium flows along constant-curvature streamlines are considered. All properties are therefore independent of the tangential streamwise coordinate. A differential relation for the Mach number dependency on the radius is derived for both ideal and non-ideal conditions. For ideal flows, the differential relation is integrated analytically. Assuming a constant specific heat ratio $\gamma$, the Mach number is a monotonically decreasing function of the radius of curvature for ideal flows, with $\gamma$ being the only fluid-dependent parameter. In non-ideal conditions, the Mach number profile also depends on the total thermodynamic conditions of the fluid. For high molecular complexity fluids, such as toluene or hexamethyldisiloxane, a non-monotone Mach number profile is admissible in single-phase supersonic conditions. For Bethe–Zel'dovich–Thompson fluids, non-monotone behaviour is observed in subsonic conditions. Numerical simulations of subsonic and supersonic turning flows are carried out using the streamline curvature method and the computational fluid dynamics software SU2, respectively, both confirming the flow evolution from uniform flow conditions to the radial equilibrium profile predicted by the theory.
Using a combination of mean flow spatial linear stability and two-dimensional volume-of-fluid (VoF) simulations, the physics governing the instability of high-speed liquid sheets being injected into a quiescent gas environment is studied. It is found that the gas shear layer thickness $\delta _G$ plays an influential role, where for values $\delta _G/H\lesssim 1/8$, the growth of sinuous and varicose modes is nearly indistinguishable. Here, $H$ is the liquid sheet thickness. With larger values of $\delta _G/H$, a second peak develops in the lower wavenumber region of the dispersion relation, and becomes increasingly dominant. This second peak corresponds to a large-scale sinuous mode, and its critical wavelength $\lambda _{crit,sinuous}$ is found to scale as $\lambda _{crit,sinuous}/H = 14.26 (\delta _G/H)^{0.766}$. This scaling behaviour collapses onto a single curve for various combinations of the liquid-based Reynolds ($Re_L$) and Weber ($We_L$) numbers, provided that $\delta _G/H > O({10^{-1}})$. For the varicose modes, the shape of the dispersion relation does not change with variations in $\delta _G/H$, and the liquid shear layer thickness has an almost negligible influence on the growth of instabilities. Two-dimensional VoF simulations are employed to examine the validity of the linear stability assumptions. These simulations also show that the dominant sinuous mode remains active as the process transitions into the nonlinear regime, and that this mode is ultimately responsible for fragmenting the sheet. Based on an energy budget analysis, the most influential contributors to the growth of the sinuous mode are the gas Reynolds shear stress and the lateral working of pressure on the gas side.
Childhood maltreatment and mental health problems are common among young people placed out-of-home. However, evidence on the impact of maltreatment on the course of mental health problems in at-risk populations is sparse. The aim of this longitudinal study is twofold: (a) describe the course of mental health problems and the shift in symptom patterns among adolescents in youth residential care into young adulthood and (b) assess how childhood maltreatment is related to the course of mental health problems. One hundred and sixty-six adolescents in Swiss youth residential care were followed up into young adulthood (36.1% women; MAge-Baseline = 16.1 years; MAge-Follow-Up = 26.4 years). Latent transition analysis was employed to analyze transitions of symptom patterns and their association with maltreatment exposure. We found three latent classes of mental health problems: a “multiproblem”-class (51.8% baseline; 33.7% follow-up), a “low symptom”-class (39.2% baseline; 60.2% follow-up), and an “externalizing”-class (9.0% baseline; 6.0% follow-up). Individuals in the “multiproblem”-class were likely to transition towards less-complex symptom patterns. Higher severity of self-reported childhood maltreatment was associated with more complex and persistent mental health problems. Our study underlines the need for collaboration between residential and psychiatric care systems within and after care placements, with a specialized focus on trauma-informed interventions and care.
Time-varying flow separation on an accelerating prolate spheroid has been studied at various angles of incidence. Instantaneous pressure and scanning stereoscopic particle image velocimetry were used to shed light on the evolution of cross-flow structures for the Reynolds number ($Re$) range of $1.0\times 10^6\leq Re \leq 1.5\times 10^6$. The movement of separation lines is examined for various model accelerations to investigate on the interplay between acceleration and flow separation. The results demonstrate that for axial accelerations, the streamwise pressure distribution in the rear part of the prolate spheroid switches from an adverse to a favourable pressure gradient. At the same time, the circumferential adverse pressure gradient present during steady motion vanishes during said accelerations. In contrast, both streamwise and circumferential adverse pressure gradients strengthen when the model is axially decelerated. These dynamic pressure distributions influence the location of the separation line, which in turn moves closer to the model meridian during accelerations while moving outwards during decelerations. The streamwise vorticity distribution and the streamwise circulation both show how the separation-line position impacts the vortex formation. A high-vorticity region near the model surface is established during acceleration. In contrast, a decelerating model leads to transport of high-vorticity fluid into the outer area of the cross-flow separation. We further assess the memory effects following the near-impulsive velocity changes. The cross-flow retains the memory of moving separation lines shortly after the acceleration. However, the separation recovers quickly to a steady state.
Censorship is one of the main forms of political coercion deployed by modern states to control and regulate public expression. In this article, we examine the political censorship of China’s intellectual public space, which has long been underexplored. We apply unsupervised machine learning to examine the database of a leading intellectual portal website, which serves as an archive of both published and censored intellectual writings between 2000 and 2020 and includes over 740 million Chinese characters. We identify a strategic censorship mechanism that consists of thematic and persona censorship elements. Thematic censorship involves the state filtering out writing that competes with the official policy narrative, historiography, and values. Persona censorship involves the complete muting of individual intellectuals who have previously made derogatory attacks on the supreme leaders of the Communist Party, which represents a symbolic act of open defiance.
Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number $Re_\tau = {O}(10^4)$ allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number $St^+=18$–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We perform simultaneous imaging of both carrier and dispersed phases along wall-parallel planes in the logarithmic layer, demonstrating that streamwise particle streaks largely overlap with large-scale low-speed flow regions. The fluid–particle slip velocity indicates that with increasing inertia, the particle streaks outlive the low-speed fluid streaks. Moreover, two-point statistics show that the width of the particle streaks increases linearly with Stokes number, bounded by the size of the coherent flow structures. Finally, the particle-sampled flow topology suggests that particle streaks reside between the legs of hairpin packets. From these observations, we infer a conceptual view of the formation of particle streaks in the frame of the attached eddy model. A scaling for the particle streaks’ width is derived as a function of $Re_\tau$ and $St^+$, which reproduces the measured trends and predicts widths ${O}(0.1)$ m in the atmospheric surface layer, comparable to aeolian streamers observed in the field.
We present a method for accurately determining the stability characteristics of spatially modulated shear layers. The algorithm can handle arbitrary commensurate states, which are not accessible to classical direct-numerical-simulation-based approaches. It uses spectral discretization of the field equations to handle field modulations and the spectrally accurate immersed boundary conditions method to handle the geometry modulations. The algorithm can deal with pattern interaction effects driven by modulations of different physical origins. Various tests demonstrate that the algorithm delivers spectral accuracy for eigenvalues and eigenfunctions. The algorithm can be easily extended to analyse many sources and patterns of modulation with minimal commitment to the user's time.
Our objective was to evaluate the psychometric properties of the culturally adapted NIH Toolbox African Languages® when used in Swahili and Dholuo-speaking children in western Kenya.
Method:
Swahili-speaking participants were recruited from Eldoret and Dholuo-speaking participants from Ajigo; all were <14 years of age and enrolled in primary school. Participants completed a demographics questionnaire and five fluid cognition tests of the NIH Toolbox® African Languages program, including Flanker, Dimensional Change Card Sort (DCCS), Picture Sequence Memory, Pattern Comparison, and List Sorting tests. Statistical analyses examined aspects of reliability, including internal consistency (in both languages) and test–retest reliability (in Dholuo only).
Results:
Participants included 479 children (n = 239, Swahili-speaking; n = 240, Dholuo-speaking). Generally, the tests had acceptable psychometric properties for research use within Swahili- and Dholuo-speaking populations (mean age = 10.5; SD = 2.3). Issues related to shape identification and accuracy over speed limited the utility of DCCS for many participants, with approximately 25% of children unable to match based on shape. These cultural differences affected outcomes of reliability testing among the Dholuo-speaking cohort, where accuracy improved across all five tests, including speed.
Conclusions:
There is preliminary evidence that the NIH Toolbox ® African Languages potentially offers a valid assessment of development and performance using tests of fluid cognition in Swahili and Dholuo among research settings. With piloting underway across other diverse settings, future research should gather additional evidence on the clinical utility and acceptability of these tests, specifically through the establishment of norming data among Kenyan regions and evaluating these psychometric properties.
The purpose of this paper is to analyse the effects of natural resources on income inequality conditional on economic complexity in 111 developed and developing countries from 1995 to 2016. The system-GMM results show that economic complexity reverses the positive effects of natural resource dependence on income inequality. Furthermore, results are robust to the distinction between dependence on point resources (fossil fuels, ores, and metals), dependence on diffuse resources (agricultural raw material), and resource abundance. Finally, there are significant differences between countries, depending on the level of ethnic fragmentation and democracy.
The finding that victims’ psychological problems tend to be exacerbated in lower-victimization classrooms has been referred to as the “healthy context paradox.” The current study has put the healthy context paradox to a strict test by examining whether classroom-level victimization moderates bidirectional within- and between-person associations between victimization and psychological adjustment. Across one school year, 3,470 Finnish 4th to 9th graders (Mage = 13.16, 46.1% boys) reported their victimization, depressive symptoms, anxiety, and self-esteem. Three types of multilevel models (cross-lagged panel, latent change score, and random-intercept cross-lagged panel) were estimated for each indicator of psychological adjustment. Findings indicated that the healthy context paradox emerges because classroom-level victimization moderates the prospective effect of victimization on psychological problems, rather than the effect of psychological problems on victimization. In classrooms with lower victimization, victims not only experience worse psychological maladjustment over time compared to others (between-person changes), but also higher maladjustment than before (absolute within-person changes).
Word list-learning tasks are commonly used to evaluate auditory-verbal learning and memory. However, different frequencies of word usage, subtle meaning nuances, unique word phonology, and different preexisting associations among words make translation across languages difficult. We administered lists of consonant-vowel-consonant (CVC) nonword trigrams to independent American and Italian young adult samples. We evaluated whether an auditory list-learning task using CVC nonword trigrams instead of words could be applied cross-culturally to evaluate similar learning and associative memory processes.
Participants and Methods:
Seventy-five native English-speaking (USA) and 104 native Italian-speaking (Italy) university students were administered 15-item lists of CVC trigrams using the Rey Auditory Verbal Learning Test paradigm with five study-test trials, an interference trial, and short- and long-term delayed recall. Bayesian t tests and mixed-design ANOVAs contrasted the primary learning indexes across the two samples and biological sex.
Results:
Performance was comparable between nationalities on all primary memory indices except the interference trial (List B), where the Italian group recalled approximately one item more than the American sample. For both nationalities, recall increased across the five learning trials and declined significantly on the postinterference trial, demonstrating susceptibility to retroactive interference. No effects of sex, age, vocabulary, or depressive symptoms were observed.
Conclusions:
Using lists of unfamiliar nonword CVC trigrams, Italian and American younger adults showed a similar performance pattern across immediate and delayed recall trials. Whereas word list-learning performance is typically affected by cultural, demographic, mood, and cognitive factors, this trigram list-learning task does not show such effects, demonstrating its utility for cross-cultural memory assessment.
Health benefits represent employers’ fastest growing operating expense. Efforts from human resources to control healthcare spending through restrictive plan design changes and corporate wellness programs may not achieve employer health and financial goals and may negatively impact employee outcomes. Employers are increasingly contracting directly with providers in order to access quality medical care and to control spending. The purpose of this practice-focused paper is to provide survey data collected from 10 employers as part of the quality improvement activities of a direct primary care (DPC) program. Overall, survey responses of employees engaged with DPC had higher patient satisfaction, group health plan rating, perceived organizational support, and job satisfaction than survey responses of those registered into the program but not yet engaged with a DPC physician. Implementation considerations and DPC characteristics are provided.