To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Supersonic free jets are extensively employed across a range of applications, especially in high-tech industries such as semiconductor processing and aerospace propulsion. Due to the difficulties involved in flow measurement, previous research on supersonic free jets has primarily focused on investigating near-field shockwave structures, with quantitative experimental analysis of the far-field zone being relatively scarce. However, physical understanding of the far-field flow, particularly post-shockwave energy dissipation, holds significant importance for the application and utilisation of these jets in vacuum environments. Therefore, this study aims to provide a robust experimental foundation for a rarefied supersonic free jet through the analysis of the flow field in both the near- and far-field zones. Nanometre-sized tracer particles and molecules were utilised to measure the rarefied supersonic jet flow field using particle image velocimetry and acetone molecular tagging velocimetry, respectively. The experiments revealed that in rarefied conditions, the supersonic jet exhibits a one-barrel shockwave structure in the near field, and after passing the Mach disk, a long annular viscous layer develops downstream. Experimental data on the jet velocity profile and width demonstrated a transition to a laminar flow regime in the far-field zone. This transition aligns with the theoretically inferred flow regimes based on the complex Reynolds number. The velocity profile and potential core length of the laminar flow regime could be modelled using a bi-modal distribution, which represents the summation of symmetric Gaussian distributions.
Paternity leave may promote greater gender equality in domestic labour. Though numerous studies show that paternity leave promotes greater fathers’ involvement in childcare, less is known about whether paternity leave-taking may facilitate fathers’ involvement in other forms of domestic labour such as housework. Using repeated cross-sectional data on different-gender partnered US parents from the Study on Parents’ Divisions of Labor During COVID-19 (SPDLC), this study examines the extent to which paternity leave-taking and length of paternity leave are associated with US fathers’ shares of, and time spent on, housework. Findings suggest that paternity leave-taking is positively associated with fathers’ shares of, and time spent on, housework tasks. Longer paternity leaves are also associated with fathers performing greater shares of housework. Overall, this study indicates that the benefits of paternity leave likely extend to fathers’ greater participation in housework, providing additional support for the belief that increased use of paternity leave may help to promote gender equality in domestic labour.
Ventilated cavities in the wake of a two-dimensional bluff body are studied experimentally via time-resolved X-ray densitometry. With a systematic variation of flow velocity and gas injection rate, expressed as Froude number ($\textit{Fr}$) and ventilation coefficient ($C_{qs}$), four cavities with different closure types are identified. A regime map governed by $\textit{Fr}$ and $C_{qs}$ is constructed to estimate flow conditions associated with each cavity closure type. Each closure exhibits a different gas ejection mechanism, which in turn dictates the cavity geometry and the pressure in the cavity. Three-dimensional cavity closure is seen to exist for the supercavities at low $\textit{Fr}$. However, closure is nominally two-dimensional for supercavities at higher $\textit{Fr}$. At low $C_{qs}$, cavity closure is seen to be wake-dominated, while supercavities are seen to have interfacial perturbation near the closure at higher $C_{qs}$, irrespective of $\textit{Fr}$. With the measured gas fraction, a gas balance analysis is performed to quantify the gas ejection rate at the transitional cavity closure during its formation. For a range of $\textit{Fr}$, the transitional cavity closure is seen to be characterised by re-entrant flow, whose intensity depends on the flow inertia, dictating the gas ejection rates. Two different ventilation strategies were employed to systematically investigate the formation and maintenance gas fluxes. The interaction of wake and gas injection is suspected to dominate the cavity formation process and not the maintenance, resulting in ventilation hysteresis. Consequently, the ventilation gas flux required to maintain the supercavity is significantly less than the gas flux required to form the supercavity.
Against the proliferation of large language model (LLM) based Artificial Intelligence (AI) products such as ChatGPT and Gemini, and their increasing use in professional communication training, researchers, including applied linguists, have cautioned that these products (re)produce cultural stereotypes due to their training data. However, there is a limited understanding of how humans navigate the assumptions and biases present in the responses of these LLM-powered systems and the role humans play in perpetuating stereotypes during interactions with LLMs. In this article, we use Sequential-Categorial Analysis, which combines Conversation Analysis and Membership Categorization Analysis, to analyze simulated interactions between a human physiotherapist and three LLM-powered chatbot patients of Chinese, Australian, and Indian cultural backgrounds. Coupled with analysis of information elicited from LLM chatbots and the human physiotherapist after each interaction, we demonstrate that users of LLM-powered systems are highly susceptible to becoming interactionally entrenched in culturally essentialized narratives. We use the concepts of interactional instinct and interactional entrenchment to argue that whilst human–AI interaction may be instinctively prosocial, LLM users need to develop Critical Interactional Competence for human–AI interaction through appropriate and targeted training and intervention, especially when LLM-powered tools are used in professional communication training programs.
Ultra-thin liquid sheets generated by impinging two liquid jets are crucial high-repetition-rate targets for laser ion acceleration and ultra-fast physics, and serve widely as barrier-free samples for structural biochemistry. The impact of liquid viscosity on sheet thickness should be comprehended fully to exploit its potential. Here, we demonstrate experimentally that viscosity significantly influences thickness distribution, while surface tension primarily governs shape. We propose a thickness model based on momentum exchange and mass transport within the radial flow, which agrees well with the experiments. These results provide deeper insights into the behaviour of liquid sheets and enable accurate thickness control for various applications, including atomization nozzles and laser-driven particle sources.
Cavitation bubble pulsation and liquid jet loads are the main causes of hydraulic machinery erosion. Methods to weaken the load influences have always been hot topics of related research. In this work, a method of attaching a viscous layer to a rigid wall is investigated in order to reduce cavitation pulsations and liquid jet loads, using both numerical simulations and experiments. A multiphase flow model incorporating viscous effects has been developed using the Eulerian finite element method (EFEM), and experimental methods of a laser-induced bubble near the viscous layer attached on a rigid wall have been carefully designed. The effects of the initial bubble–wall distance, the thickness of the viscous layer, and the viscosity on bubble pulsation, migration and wall pressure load are investigated. The results show that the bubble migration distance, the normalised thickness of the oil layer and the wall load generally decrease with the initial bubble–wall distance or the oil-layer parameters. Quantitative analysis reveals that when the initial bubble–wall distance remains unchanged, there exists a demarcation line for the comparison of the bubble period and the reference period (the bubble period without viscous layer under the same initial bubble–wall distance), and a logarithmic relationship is observed that $\delta \propto \log_{10} \mu ^*$, where $\delta =h/R_{max}$ is the thickness of the viscous layer h normalised by the maximum bubble radius $R_{max}$, $\mu ^* = \mu /({R_{max }}\sqrt {{\rho }{{\mathop {P}\nolimits } _{{atm}}}})$ is the dynamic viscosity $\mu$ normalised by water density $ \rho $ and atmospheric pressure $P_{atm}$. The results of this paper can provide technical support for related studies of hydraulic cavitation erosion.
Conceptual innovation is highly prized in Western Anglophone philosophy. Yet it often stems from a relatively narrow tradition that takes little account of contributions from other cultures and philosophical practices. We illustrate this point using the example of work done by Dalit feminists on identifying and addressing hermeneutical injustice. Despite their relevance, Dalit feminist contributions are virtually unknown and remain unrecognized in Anglophone philosophical discussions of hermeneutical injustice. This article aims to investigate the reasons for this neglect. One potential reason is the generally low status accorded to experiential knowledge in epistemology, which is pivotal to Dalit feminist accounts. Another reason concerns systematic bias against non-Western philosophy, which may reflect prejudicial stereotypes and the privileging of existing disciplinary norms. We argue that these reasons may explain the exclusion of Dalit feminists’ scholarship. In light of this, we offer two modest suggestions. First, philosophers should cultivate greater openness to citing texts by non-philosophers where these texts are relevant to the topic at hand. Second, we argue that a more embedded and extensive practice of cross-cultural philosophy or comparative philosophy is needed. These two suggestions may reduce neglect of philosophically rich traditions such as Dalit feminism.
Recommendations for immunisation practices in children with single ventricle CHD are lacking. A survey of 53 heart centres received responses from 40 centres (33 complete and 7 partial) revealing variability in immunisation recommendations. Only 11% have a written protocol. Immunisations were delayed before cardiopulmonary bypass in 94% (32/34) and after cardiopulmonary bypass in 97% (30/31), with 34% (13/38) re-dosing some immunisations post cardiopulmonary bypass. Further research is needed to develop guidelines.
We introduce a family of polynomials, which arise in three distinct ways: in the large N expansion of a matrix integral, as a weighted enumeration of factorizations of permutations, and via the topological recursion. More explicitly, we interpret the complex Grassmannian $\mathrm {Gr}(M,N)$ as the space of $N \times N$ idempotent Hermitian matrices of rank M and develop a Weingarten calculus to integrate products of matrix elements over it. In the regime of large N and fixed ratio $\frac {M}{N}$, such integrals have expansions whose coefficients count factorizations of permutations into monotone sequences of transpositions, with each sequence weighted by a monomial in $t = 1 - \frac {N}{M}$. This gives rise to the desired polynomials, which specialise to the monotone Hurwitz numbers when $t = 1$. These so-called deformed monotone Hurwitz numbers satisfy a cut-and-join recursion, a one-point recursion, and the topological recursion. Furthermore, we conjecture on the basis of overwhelming empirical evidence that the deformed monotone Hurwitz numbers are real-rooted polynomials whose roots satisfy remarkable interlacing phenomena. An outcome of our work is the viewpoint that the topological recursion can be used to “topologise” sequences of polynomials, and we claim that the resulting families of polynomials may possess interesting properties.