We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Both experimental and theoretical studies of fast and microscale physical phenomena occurring during the growth of vapour bubbles in nucleate pool boiling are reported. The focus is on the liquid film of micrometric thickness (a ‘microlayer’) that can form between the heater and the liquid–vapour interface of a bubble. The microlayer strongly affects the macroscale heat transfer and is thus important to be understood. The microlayer appears as a result of the inertial forces that cause the hemispherical bubble shape. It is shown that the microlayer can be seen as the Landau–Levich film deposited by the bubble foot edge during its receding. Paradoxically, the deposition is controlled by viscosity and surface tension. The microlayer profile measured with white-light interferometry, the temperature distribution over the heater, and the bubble shape are observed with synchronised high-speed cameras. According to the numerical simulations, the microlayer consists of two regions: a dewetting ridge near the contact line, and a longer and flatter bumped part. It is shown that the ridge cannot be measured by interferometry because of its intrinsic limitation on the interface slope. The ridge growth is linked to the contact line receding. The simulated dynamics of both the bumped part and the contact line agrees with the experiment. The physical origin of the bump in the flatter part of microlayer is explained.
We study the behaviour of the streamwise velocity variance in turbulent wall-bounded flows using a direct numerical simulation (DNS) database of pipe flow up to friction Reynolds number ${{Re}}_{\tau } \approx 12000$. The analysis of the spanwise spectra in the viscous near-wall region strongly hints to the presence of an overlap layer between the inner- and the outer-scaled spectral ranges, featuring a $k_{\theta }^{-1+\alpha }$ decay (with $k_{\theta }$ the wavenumber in the azimuthal direction, and $\alpha \approx 0.18$), hence shallower than suggested by the classical formulation of the attached-eddy model. The key implication is that the contribution to the streamwise velocity variance $(\langle{u}^2\rangle)$ from the largest scales of motion (superstructures) slowly declines as ${{Re}}_{\tau }^{-\alpha }$, and the integrated inner-scaled variance follows a defect power law of the type $\langle u^2 \rangle ^+ = A - B \, {{Re}}_{\tau }^{-\alpha }$, with constants $A$ and $B$ depending on $y^+$. The DNS data very well support this behaviour, which implies that strict wall scaling is restored in the infinite-Reynolds-number limit. The extrapolated limit distribution of the streamwise velocity variance features a buffer-layer peak value of $\langle u^2 \rangle ^+ \approx 12.1$, and an additional outer peak with larger magnitude. The analysis of the velocity spectra also suggests a similar behaviour of the dissipation rate of the streamwise velocity variance at the wall, which is expected to attain a limiting value of approximately $0.28$, hence slightly exceeding the value $0.25$ which was assumed in previous analyses (Chen & Sreenivasan, J. Fluid Mech., vol. 908, 2021, R3). We have found evidence suggesting that the reduced near-wall influence of wall-attached eddies is likely linked to the formation of underlying turbulent Stokes layers.
Immersed nonlinear elements are prevalent in biological systems that require a preferential flow direction, such as the venous and the lymphatic system. We investigate here a certain class of models where the fluid is driven by peristaltic pumping and the nonlinear elements are ideal valves that completely suppress backflow. This highly nonlinear system produces discontinuous solutions that are difficult to study. We show that, as the density of valves increases, the pressure and flow are well approximated by a continuum of valves which can be analytically treated, and we demonstrate through numeric simulation that the approximation works well even for intermediate valve densities. We find that the induced flow is linear in the peristaltic amplitude for small peristaltic forces and, in the case of sinusoidal peristalsis, is independent of pumping direction. Despite the continuum approximation used, the physical valve density is accounted for by modifying the resistance of the fluid appropriately. The suppression of backflow causes a net benefit in adding valves when the valve density is low, but once the density is high enough, valves predominately suppress forward flow, suggesting there is an optimum number of valves per wavelength. The continuum model for peristaltic pumping through an array of valves presented in this work can eventually provide insights about the design and operating principles of complex flow networks with a broad class of nonlinear elements.
Three-dimensional direct numerical simulations of rotating Rayleigh–Bénard convection in the planar geometry with no-slip top and bottom and periodic lateral boundary conditions are performed for a broad parameter range with the Rayleigh number spanning in $5\times 10^{6}\leq Ra \leq 5\times 10^{13}$, Ekman number within $5\times 10^{-9}\leq Ek \leq 5\times 10^{-5}$ and Prandtl number $Pr=1$. The thermal and Ekman boundary layer (BL) statistics, temperature drop within the thermal BL, interior temperature gradient and scaling behaviours of the heat and momentum transports (reflected in the Nusselt $Nu$ and Reynolds numbers $Re$) as well as the convective length scale are investigated across various flow regimes. The global and local momentum transports are examined via the $Re$ scaling derived from the classical theoretical balances of viscous–Archimedean–Coriolis (VAC) and Coriolis–inertial–Archimedean (CIA) forces. The VAC-based $Re$ scaling is shown to agree well with the data in the cellular and columnar regimes, where the characteristic convective length scales as the onset length scale ${\sim } Ek^{1/3}$, while the CIA-based $Re$ scaling and the inertia length scale $\sim (ReEk)^{1/2}$ work well in the geostrophic turbulence regime for $Ek\leq 1.5\times 10^{-8}$. The examinations of $Nu$, global and local $Re$, and convective length scale as well as the temperature drop within the thermal BL and its thickness scaling behaviours, indicate that for extreme parameters of $Ek\leq 1.5\times 10^{-8}$ and $80\lesssim RaEk^{4/3}\lesssim 200$, we have reached the diffusion-free geostrophic turbulence regime.
Two-dimensional (2-D) and three-dimensional (3-D) direct numerical simulations are conducted for flow past rectangular cylinders with various cross-sectional aspect ratios. The primary focuses are the interactions between the 2-D wake transitions in the spanwise vortex street (with distance downstream) and the 3-D wake transitions in the streamwise vortices, and the influence of both 2-D and 3-D wake transitions on the hydrodynamic forces on the cylinder. The 2-D wake transitions generally move upstream with increasing Reynolds number and decreasing aspect ratio. The corresponding reasons are explained. The 2-D wake transitions emerging close to the cylinder may directly alter the hydrodynamic forces on the cylinder, e.g. the Strouhal number, time-averaged drag coefficient and root-mean-square lift coefficient. By using specifically designed numerical cases to decompose the effects of the two 2-D transitions, it is found that the first 2-D transition from the primary to the two-layered vortex street results in reductions in the hydrodynamic forces, while the second 2-D transition to the secondary vortex street results in increases in the forces. The reduction/increase in the hydrodynamic forces becomes more significant when the transition location moves closer to the cylinder. The physical mechanisms for the influence on the hydrodynamic forces are elucidated. The upstream movement of the 2-D wake transitions also induces complex interactions between the 2-D and 3-D wake transitions (which also depends on the type of the 3-D mode). Correspondingly, the 3-D hydrodynamic forces may be governed by both 2-D and 3-D wake transitions (and their mutual influence).
Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in the wind or when submerged kelp forests are agitated by marine currents. Here, we provide a detailed characterisation of the turbulent flow developed above and between the flexible filaments of a fully submerged dense canopy and we describe their dynamical response to the turbulent forcing. We investigate a wide range of flexibilities, encompassing the case in which the filaments are completely rigid and standing upright as well as that where they are fully compliant to the flow and deflected in the streamwise direction. We are thus able to isolate the effect of the canopy flexibility on the drag and on the inner–outer flow interactions, as well as the two flapping regimes of the filaments already identified for a single fibre. Furthermore, we offer a detailed description of the Reynolds stresses throughout the wall-normal direction resorting to the Lumley triangle formalism, and we show the multi-layer nature of turbulence inside and above the canopy. The relevance of our investigation is thus twofold: the fundamental physical understanding developed here paves the way towards the investigation of more complex and realistic scenarios, while we also provide a thorough characterisation of the turbulent state that can prove useful in the development of accurate turbulence models for RANS and LES.
The scale-dependent variability of convective velocities and structure inclination angles in wall-bounded turbulence was studied experimentally via space–time energy spectrum measurements. We found that the variability of convection velocities for large-scale motions (LSMs) decreased inversely with streamwise wavenumbers, and that the variability trend was not fully explained by earlier applications of Kraichnan's ‘random-sweeping’ model of turbulence that assumed perfect scale separation. By analytically extending the random-sweeping model to allow for a dominant large scale in the random-sweeping signal that can interact with other LSMs, we showed how scale interactions can explain the variability trend in convection velocities for LSMs. The variability in convection velocities was also shown to correlate with the scale-dependent inclination angles of coherent structures that were obtained via cross-spectral analysis. Large-scale motions tended to exhibit shallower inclination to the wall with increasing convection velocity, while small-scale motions and those far from the wall exhibited the reverse behaviour. We proposed that these two opposite relationships between inclination angle and convection velocity can be explained in terms of a balance between opposing effects of the mean shear and the coherent structure geometry. Descriptions and models of convection velocity variability effects are useful both for modelling turbulence spectra and explaining the geometry of coherent structures.
We study the stationary Navier–Stokes equations in the region between two rotating concentric cylinders. We first prove that, for a small Reynolds number, if the fluid flow is axisymmetric and if its velocity is sufficiently small in the $L^\infty$-norm, then it is necessarily the Taylor–Couette–Poiseuille flow. If, in addition, the associated pressure is bounded or periodic in the $z$ axis, then it coincides with the well-known canonical Taylor–Couette flow. We discuss the relation between uniqueness and stability of such a flow in terms of the Taylor number in the case of narrow gap of two cylinders. The investigation in comparison with two Reynolds numbers based on inner and outer cylinder rotational velocities is also conducted. Next, we give a certain bound of the Reynolds number and the $L^\infty$-norm of the velocity such that the fluid is, indeed, necessarily axisymmetric. As a result, it is clarified that smallness of Reynolds number of the fluid in the two rotating concentric cylinders governs both axisymmetry and the Taylor–Couette–Poiseuille flow with the exact form of the pressure.
We investigate Reynolds number effects in strong shock-wave/turbulent boundary-layer interactions (STBLI) by leveraging a new database of wall-resolved and long-integrated large-eddy simulations. The database encompasses STBLI with massive boundary-layer separation at Mach $2.0$, impinging-shock angle $40^{\circ }$ and friction Reynolds numbers ${\textit {Re}}_\tau$$355$, $1226$ and $5118$. Our analysis shows that the shape of the reverse-flow bubble is notably different at low and high Reynolds number, while the mean-flow separation length, separation-shock angle and incipient plateau pressure are rather insensitive to Reynolds number variations. Velocity statistics reveal a shift in the peak location of the streamwise Reynolds stress from the separation-shock foot to the core of the detached shear layer at high Reynolds number, which we attribute to increased pressure transport in the separation-shock excursion domain. Additionally, in the high Reynolds case, the separation shock originates deep within the turbulent boundary, resulting in intensified wall-pressure fluctuations and spanwise variations associated with the passage of coherent velocity structures. Temporal spectra of various signals show energetic low-frequency content in all cases, along with a distinct peak in the bubble-volume spectra at a separation-length-based Strouhal number $St_{L_{sep}}\approx 0.1$. The separation shock is also found to lag behind bubble-volume variations, consistent with the acoustic propagation time from reattachment to separation and a downstream mechanism driving the shock motion. Finally, dynamic mode decomposition of three-dimensional fields suggests a Reynolds-independent statistical link among separation-shock excursions, velocity streaks and large-scale vortices at low frequencies.
The classical Gill's problem, focusing on the stability of thermal buoyancy-driven convection in a vertical porous slab with impermeable isothermal boundaries, is studied from a different perspective by considering a triple-diffusive fluid system having different molecular diffusivities. The assessment of stability/instability of the basic flow entails a numerical solution of the governing equations for the disturbances as Gill's proof of linear stability falls short. The updated problem formulation is found to introduce instability in contrast to Gill's original set-up. A systematic examination of neutral stability curves is undertaken for KCl–NaCl–sucrose and heat–KCl–sucrose aqueous systems which are found to exhibit an anomalous behaviour on the stability of base flow. It is found that, in some cases, the KCl–NaCl–sucrose system necessitates the requirement of four critical values of the Darcy–Rayleigh number to specify the linear stability criteria ascribed to the existence of two isolated neutral curves positioned one below the other. Conversely, the heat–KCl–sucrose system demands only two critical values of the Darcy–Rayleigh number to decide the stability of the system. The stability boundaries are presented and the emergence of a travelling-wave mode supported back and forth with stationary modes is observed due to the introduction of a third diffusing component. In addition, some intriguing outcomes not recognized hitherto for double-diffusive fluid systems are manifested.
Symmetry-breaking bifurcations, where a flow state with a certain symmetry undergoes a transition to a state with a different symmetry, are ubiquitous in fluid mechanics. Much can be understood about the nature of these transitions from symmetry alone, using the theory of groups and their representations. Here, we show how the extensive databases on groups in crystallography can be exploited to yield insights into fluid dynamical problems. In particular, we demonstrate the application of the crystallographic layer groups to problems in fluid layers, using thermal convection as an example. Crystallographic notation provides a concise and unambiguous description of the symmetries involved, and we advocate its broader use by the fluid dynamics community.
The actuator line method (ALM) is a commonly used technique to simulate slender lifting and dragging bodies such as wings or blades. However, the accuracy of the method is significantly reduced near the tip. To quantify the loss of accuracy, translating wings with various aspect and taper ratios are simulated using several methods: wall-resolved Reynolds-averaged Navier–Stokes (RANS) simulations, an advanced ALM with two-dimensional (2-D) mollification of the force, a lifting line method, a mollified lifting line method and a vortex lattice method. Significant differences in the lift and drag distributions are found on the part of the wing where the distance to the tip is smaller than approximately 3 chords and are identified to arise from both the forces mollification and the uneven induced velocity along the chord. Correction functions acting on the lift coefficient and effective angle of attack near the wing tip are then derived for rectangular wings of various aspect ratios. They are then also applied to wings of various taper ratios using the ‘effective dimensionless distance to the tip’ as the main parameter. The application of the correction not only leads to a much improved lift distribution, but also to a more consistent drag distribution. The correction functions are also obtained for various mollification sizes, as well as for ALM with three-dimensional (3-D) mollification. These changes mostly impact the correction for the effective angle of attack. Finally, the correction is applied to simulations of the NREL Phase VI wind turbine, leading to an enhanced agreement with the experimental data.
A new risk measure, the Lambda Value-at-Risk (VaR), was proposed from a theoretical point of view as a generalization of the ordinary VaR in the literature. Motivated by the recent developments in risk sharing problems for the VaR and other risk measures, we study the optimization of risk sharing for the Lambda VaR. Explicit formulas of the inf-convolution and sum-optimal allocations are obtained with respect to the left Lambda VaRs, the right Lambda VaRs, or a mixed collection of the left and right Lambda VaRs. The inf-convolution of Lambda VaRs constrained to comonotonic allocations is investigated. Explicit formula for worst-case Lambda VaRs under model uncertainty induced by likelihood ratios is also given.
A new wall-wake law is proposed for the streamwise turbulence in the outer region of a turbulent boundary layer. The formulation pairs the logarithmic part of the profile (with a slope $A_1$ and additive constant $B_1$) to an outer linear part, and it accurately describes over 95 % of the boundary layer profile at high Reynolds numbers. Once the slope $A_1$ is fixed, $B_1$ is the only free parameter determining the fit. Most importantly, $B_1$ is shown to follow the same trend with Reynolds number as the wake factor in the wall-wake law for the mean velocity, which is tied to changes in scaling of the mean flow and the turbulence that occur at low Reynolds number.
We investigate flow of liquid which is partially filled in a cylindrical container horizontally rotating about its axis of symmetry. Even if the rotation is slow enough to keep the liquid–gas interface almost undeformed, convection cells whose circulation axis is perpendicular to the container's rotational axis can be sustained. We conduct experiments by particle image velocimetry and direct numerical simulations with the S-CLSVOF and immersed boundary methods to reveal the condition of the Reynolds number, the aspect ratio of the container and the filling ratio of liquid for the onset of these convection cells. When the filling ratio is not too large, as the Reynolds number increases, convection cells appear through a pitchfork bifurcation in an infinitely long cylinder. This bifurcation becomes imperfect in the case of a finite-length cylinder. In contrast, when the filling ratio is large enough, convection cells appear through a subcritical bifurcation. Through these investigations, it becomes evident that the axial wavelength of sustained convection cells is an increasing function of the filling ratio in an infinitely long cylinder. In practice, to sustain intense convection cells, we should use a cylinder with the length equal to an integer multiple of the wavelength of the most unstable mode in the infinite-length cylinder. Although we focus on the liquid-pool regime with small Froude numbers, the critical Reynolds number for the pitchfork bifurcation weakly depends on the Froude number. This dependence is explained by considering the changes in the effective filling ratio and the convection velocity.
Low Stokes number particles at dilute concentrations in turbulent flows can reasonably be approximated as passive scalars. The added presence of a drift velocity due to buoyancy or gravity when considering the transport of such passive scalars can reduce the turbulent dispersion of the scalar via a diminution of the eddy diffusivity. In this work, we propose a model to describe this decay and use a recently developed technique to accurately and efficiently measure the eddy diffusivity using Eulerian fields and quantities. We then show a correspondence between this method and standard Lagrangian definitions of diffusivity and collect data across a range of drift velocities and Reynolds numbers. The proposed model agrees with data from these direct numerical simulations, offers some improvement to previous models in describing other computational and experimental data and satisfies theoretical constraints that are independent of Reynolds number.
Dense mixtures of particles of varying size tend to segregate based on size during flow. Granular size segregation impacts many industrial and geophysical processes, but the development of coupled, continuum models capable of predicting the evolution of segregation dynamics and flow fields in dense granular media across different geometries remains a challenge. One reason is because size segregation stems from two driving forces: pressure gradients and shear-strain-rate gradients. Another reason is the challenge of integrating segregation models with rheological constitutive equations for dense granular flow. In this paper we develop a continuum model that accounts for pressure-gradient-driven and shear-strain-rate-gradient-driven segregation, coupled to rheological modelling of a dense granular medium across the quasi-static and dense inertial flow regimes. To calibrate and test the continuum model, we perform discrete element method (DEM) simulations of dense flow of bidisperse granular systems in two flow geometries in which both segregation driving forces are present: inclined plane flow and planar shear flow with gravity. Steady-state DEM data from inclined plane flow is used to determine the dimensionless material parameters in the pressure-gradient-driven segregation model for both spheres and disks. Then, predictions of the continuum model are tested against DEM data across different cases of inclined plane flow and planar shear flow with gravity, while varying parameters such as the size of the flow geometry, the flow speed and the initial conditions. We find that it is crucial to account for both driving forces to capture segregation dynamics across both flow geometries with a single set of parameters.
This paper gives, in the limit of infinite Froude number, a closed-form, analytical solution for steady, two-dimensional, irrotational, infinite-depth, free-surface, attached flow over a submerged tandem cascade of hydrofoils for arbitrary angle of attack, depth of submergence and interfoil separation. The multiply connected flow domain is conformally mapped to a concentric annulus in an auxiliary plane. The complex flow potential and its derivative, the complex velocity, are obtained in the auxiliary plane by considering their form at known special points in the flow and the required conformal mapping is determined by explicit integration, allowing accurate evaluation of various flow quantities including the lift on each foil. The circulation around the foils causes the foil array to act as a row of point vortices, or a shear layer, and so, for positive angles of attack, the flow speed at the free surface can substantially exceed the speed at depth, with the speeds simply related through the lift coefficient. Decreasing the interfoil separation decreases the disturbance to the free surface and greatly increases the lift per hydrofoil, thus allowing for the shallower operation of a hydrofoil array than of an isolated foil for a given lift requirement. Further, the flow over a hydrofoil array approaches its infinite depth form significantly more rapidly than that over an isolated foil. In contrast to the infinite-submergence case where a through-array flow can be imposed, in the finite submergence case, periodicity and the presence of the free surface mean that there is no net flow between the foils.
Turbulent boundary layers (TBLs) over surface perturbations like bumps with roughness – notably altering heat and mass transfer, drag, etc. – are prevalent in nature (mountains, dunes, etc.) and technology. We study a channel flow with a transverse bump on one wall superimposed with small-scale longitudinal grooves via direct numerical simulation (DNS) of incompressible flow. Turbulence statistics and dynamics are compared between grooved wall (GW) and smooth wall (SW) bumps. Streamwise spinning jets emanating from the crests’ corners alter the flow structure within the separation bubble (SB), extending the SB length by 30 % over that for SW, and have lingering effects far downstream. Grooves decrease skin friction but increase the bump's form drag by 25 %. In GW, the peaks of turbulence intensity and production decrease by 20 % and shift downstream, compared with SW. Three regions of negative production, found upstream as well as downstream of the bump, are explained in terms of two separate mechanisms: normal and shear productions. Separation upstream of the bump occurs always for GW, but intermittently for SW. Within the downstream SB, counter-rotating minibubbles form intermittently for SW but always for GW. Interestingly, a minibubble causes streamwise vorticity reversal of the upstream moving secondary flow around each crest corner. The wall pressure in GW is invariant in the spanwise direction and is explained in terms of its non-local nature and its connection with outer structures. The grooved bump unearths rich TBL flow physics – upstream separation, dynamics of the downstream minibubble, altered reattachment dynamics and negative production.