We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present volume features contributions from the 2022 BIRS-CMO workshop 'Moduli, Motives and Bundles – New Trends in Algebraic Geometry' held at the Casa Matemática Oaxaca (CMO), in partnership with the Banff International Research Station for Mathematical Innovation and Discovery (BIRS). The first part presents overview articles on enumerative geometry, moduli stacks of coherent sheaves, and torsors in complex geometry, inspired by related mini course lecture series of the workshop. The second part features invited contributions by experts on a diverse range of recent developments in algebraic geometry, and its interactions with number theory and mathematical physics, offering fresh insights into this active area. Students and young researchers will appreciate this text's accessible approach, as well as its focus on future research directions and open problems.
Cryphodera guangdongensis n. sp. was collected from the soil and roots of Schima superba in Guangdong province, China. The new species is characterised by having a nearly spherical female, with dimensions of length × width = 532.3 (423.8–675.3) × 295.6 (160.0–381.2) μm, stylet length of 35.7 (31.1–42.1) μm, protruding vulval lips, a vulval slit measuring 54.2 (47.4–58.9) μm, an area between the vulva and anus that is flat to concave, and a vulva–anus distance 49.3 (41.1–57.6) μm. The male features two lip annules, a stylet length of 31.7 (27.4–34.8) μm and basal knobs that are slightly projecting anteriorly, while lateral field is areolated with three incisures and spicules length of 27.1 (23.7–31.0) μm. The second stage juvenile is characterised by a body length of 506.1 (441.8–564.4) μm long, two to three lip annules, a stylet length 31.2 (29.7–33.2) μm which is well developed, basal knobs projecting anteriorly, a lateral field that is areolate with three incisures, and a narrow rounded tail measuring 63.2 (54.2–71.3) μm long, with a hyaline region of 35.6 (27.4–56.6) μm long that is longer than the stylet. Based on morphology and morphometrics, the new species is closely related to C. sinensis and C. japonicum within the genus Cryphodera. The phylogenetic trees constructed based on the ITS-rRNA, 28S-rRNA D2–D3 region, and the partial COI gene sequences indicate that the new species clusters with other Cryphodera species but maintains in a separated subgroup. A key to the species of the genus Cryphodera is also provided in this study.
A novel entomopathogenic nematode (EPN) species, Steinernema tarimense n. sp., was isolated from soil samples collected in a Populus euphratica forest located in Yuli County within the Tarim Basin of Xinjiang, China. Integrated morphological and molecular analyses consistently place S. tarimense n. sp. within the ‘kushidai-clade’. The infective juvenile (IJ) of new species is characterized by a body length of 674–1010 μm, excretory pore located 53–80 μm from anterior end, nerve ring positioned 85–131 μm from anterior end, pharynx base situated 111–162 μm from anterior end, a tail length of 41–56 μm, and the ratios D% = 42.0–66.6, E% = 116.2–184.4, and H% = 25.5–45.1. The first-generation male of the new species is characterized by a curved spicule length of 61–89 μm, gubernaculum length of 41–58 μm, and ratios D% = 36.8–66.2, SW% = 117.0–206.1, and GS% = 54.8–82.0. Additionally, the tail of first-generation female is conoid with a minute mucron. Phylogenetic analyses of ITS, 28S, and mt12S sequences demonstrated that the three isolates of S. tarimense n. sp. are conspecific and form a sister clade to members of the ‘kushidai-clade’ including S. akhursti, S. anantnagense, S. kushidai, and S. populi. Notably, the IJs of the new species exhibited faster development at 25°C compared to other Steinernema species. This represents the first described of an indigenous EPN species from Xinjiang, suggesting its potential as a novel biocontrol agent against local pests.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Background: Recent research has demonstrated that DBS sites in Alzheimer’s (AD) and Parkinson’s (PD) influencing cognition are functionally connected to the subiculum. However, the results are mixed, and it is unclear how or if DBS site-subiculum connectivity can be optimized to improve patient cognition. Methods: We studied how subiculum connectivity influenced cognitive outcomes in both PD (subthalamic nucleus) and AD (fornix) DBS patients (total n = 110). We first confirmed DBS site-subiculum connectivity had opposite cognitive effects in each disease. We next investigated patient factors underlying these opposing effects. Lastly, we related our findings back to clinical practice to guide DBS programming in PD and AD. Results: DBS site-subiculum connectivity correlated with cognitive improvement in AD but decline in PD. This was dependent upon hippocampal atrophy; such that higher subiculum connectivity was beneficial when the hippocampus was atrophic but deleterious when it was intact. Finally, we related our findings back to anatomy with cadaveric dissections and present how DBS stimulation can be optimized to improve patient cognition. Conclusions: DBS site-subiculum connectivity influences cognition but depends on patient factors. Thus, to optimize cognition based on patient factors, DBS electrodes can be programmed to stimulate subregions with higher or lower subiculum connectivity.
Background: Neck vessel imaging is often performed in hyperacute stroke to allow neurointerventionalists to estimate access complexity. This study aimed to assess clinician agreement on catheterization strategies based on imaging in these scenarios. Methods: An electronic portfolio of 60 patients with acute ischemic stroke was sent to 53 clinicians. Respondents were asked: (1) the difficulty of catheterization through femoral access with a regular Vertebral catheter, (2) whether to use a Simmons or reverse-curve catheter initially, and (3) whether to consider an alternative access site. Agreement was assessed using Fleiss’ Kappa statistics. Results: Twenty-two respondents (7 neurologists, 15 neuroradiologists) completed the survey. Overall there was slight interrater agreement (κ=0.17, 95% CI: 0.10–0.25). Clinicians with >50 cases annually had better agreement (κ=0.22) for all questions than those with fewer cases (κ=0.07). Agreement did not significantly differ by imaging modality: CTA (κ=0.18) and MRA (κ=0.14). In 40/59 cases (67.80%), at least 25% of clinicians disagreed on whether to use a Simmons or reverse-curve catheter initially. Conclusions: Agreement on catheterization strategies remains fair at best. Our results suggest that visual assessment of pre-procedural vessels imaging is not reliable for the estimation of endovascular access complexity.
Background: Amyotrophic Lateral Sclerosis (ALS) leads to progressive functional decline and reduced survival. Identifying clinical predictors like ALSFRS-R and FVC is essential for prognosis and disease management. Understanding progression profiles based on diagnostic characteristics supports clinical trial design and assessment of treatment response. This study evaluates disease progression and survival predictors in ALS patients from the CNDR. Methods: 1565 ALS patients in the CNDR were analyzed to assess baseline ALSFRS-R, FVC, time from symptom onset to diagnosis, and their association with disease progression and survival. Results: At diagnosis, ALSFRS-R was 44.7 (SD = 5.46), with 72.3% scoring ≥44. Mean FVC was 84.2% (SD = 23.3), with 78.3% of patients having FVC ≥65%. ALSFRS-R declined at 1.06 points/month (SD = 1.33), with faster progression in patients diagnosed within 24 months (1.61 points/month). Patients with ALSFRS-R ≥44 had a median survival of 41.8 months, compared to 30.9 months for those <44 (p < 0.001). Similarly, FVC ≥65% was associated with longer survival (35.4 vs. 29.5 months, p = 0.002). Conclusions: ALSFRS-R and FVC at diagnosis predict survival and inform clinical decision-making. These findings highlight the importance of early diagnosis and targeted interventions to slow disease progression and improve patient outcomes.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
Intensive longitudinal data (ILD) collected in mobile health (mHealth) studies contain rich information on the dynamics of multiple outcomes measured frequently over time. Motivated by an mHealth study in which participants self-report the intensity of many emotions multiple times per day, we describe a dynamic factor model that summarizes ILD as a low-dimensional, interpretable latent process. This model consists of (i) a measurement submodel—a factor model—that summarizes the multivariate longitudinal outcome as lower-dimensional latent variables and (ii) a structural submodel—an Ornstein–Uhlenbeck (OU) stochastic process—that captures the dynamics of the multivariate latent process in continuous time. We derive a closed-form likelihood for the marginal distribution of the outcome and the computationally-simpler sparse precision matrix for the OU process. We propose a block coordinate descent algorithm for estimation and use simulation studies to show that it has good statistical properties with ILD. Then, we use our method to analyze data from the mHealth study. We summarize the dynamics of 18 emotions using models with one, two, and three time-varying latent factors, which correspond to different behavioral science theories of emotions. We demonstrate how results can be interpreted to help improve behavioral science theories of momentary emotions, latent psychological states, and their dynamics.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
Inspired by laboratory experiments showing internal waves generated by a plume impinging upon a stratified fluid layer (Ansong & Sutherland. 2010 J. Fluid Mech.648, 405–434), we perform large eddy simulations in three dimensions to examine the structure and source of internal waves emanating from the top of a plume that rises vertically into stratification whose strength ranges over two orders of magnitude between different simulations. Provided the plume is sufficiently energetic to penetrate into the stratified layer, internal waves are generated with frequencies in a relatively narrow band moderately smaller than the buoyancy frequency. Through adaptations of ray theory including viscosity and use of dynamic mode decomposition, we show that the waves originate from within the turbulent flow rather than at the turbulent/non-turbulent interface between the fountain top and the surrounding stratified fluid.
We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities. Results are supported by standard analysis techniques. Experimental data indicate that predictions by available modelling for non-mass-limited targets are reasonable, with debris of the order of hundreds of μg per shot. We detect for the first time two clearly distinct types of debris emitted from the same interaction. A fraction of the debris is ejected directionally, following the target normal (rear and interaction side). The directional debris ejection towards the interaction side is larger than on the side of the target rear. The second type of debris is characterized by a more spherically uniform ejection, albeit with a small asymmetry that favours ejection towards the target rear side.
North Carolina growers have long struggled to control Italian ryegrass, and recent research has confirmed that some Italian ryegrass biotypes have become resistant to nicosulfuron, glyphosate, clethodim, and paraquat. Integrating alternative management strategies is crucial to effectively control such biotypes. The objectives of this study were to evaluate Italian ryegrass control with cover crops and fall-applied residual herbicides and investigate cover crop injury from residual herbicides. This study was conducted during the fall/winter of 2021–22 in Salisbury, NC, and fall/winter of 2021–22 and 2022–23 in Clayton, NC. The study was designed as a 3 × 5 split-plot in which the main plot consisted of three cover crop treatments (no-cover, cereal rye at 80 kg ha−1, and crimson clover at 18 kg ha−1), and the subplots consisted of five residual herbicide treatments (S-metolachlor, flumioxazin, metribuzin, pyroxasulfone, and nontreated). In the 2021–22 season at Clayton, metribuzin injured cereal rye and crimson clover 65% and 55%, respectively. However, metribuzin injured both cover crops ≤6% in 2022–23. Flumioxazin resulted in unacceptable crimson clover injury of 50% and 38% in 2021–22 and 2022–23 in Clayton and 40% in Salisbury, respectively. Without preemergence herbicides, cereal rye controlled Italian ryegrass by 85% and 61% at 24 wk after planting in 2021–22 and 2022–23 in Clayton and 82% in Salisbury, respectively. In 2021–22, Italian ryegrass seed production was lowest in cereal rye plots at both locations, except when it was treated with metribuzin. For example, in Salisbury, cereal rye plus metribuzin resulted in 39,324 seeds m–2, compared to ≤4,386 seeds m–2 from all other cereal rye treatments. In 2022–23, Italian ryegrass seed production in cereal rye was lower when either metribuzin or pyroxasulfone were used preemergence (2,670 and 1,299 seeds m–2, respectively) compared with cereal rye that did not receive an herbicide treatment (5,600 seeds m–2). cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.)
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Two studies were conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to determine the optimal granular ammonium sulfate (AMS) rate and application timing for pyroxasulfone-coated AMS. In the rate study, AMS rates included 161, 214, 267, 321, 374, 428, and 481 kg ha−1, equivalent to 34, 45, 56, 67, 79, 90, and 101 kg N ha−1, respectively. All rates were coated with pyroxasulfone at 118 g ai ha−1 and topdressed onto 5- to 7-leaf cotton. In the timing study, pyroxasulfone (118 g ai ha−1) was coated on AMS and topdressed at 321 kg ha−1 (67 kg N ha−1) onto 5- to 7-leaf, 9- to 11-leaf, and first bloom cotton. In both studies, weed control and cotton tolerance to pyroxasulfone-coated AMS were compared to pyroxasulfone applied POST and POST-directed. The check in both studies received non-herbicide-treated AMS (321 kg ha−1). Before treatment applications, all plots (including the check) were maintained weed-free with glyphosate and glufosinate. In both studies, pyroxasulfone applied POST was most injurious (8% to 16%), while pyroxasulfone-coated AMS resulted in ≤4% injury. Additionally, no differences in cotton lint yield were observed in either study. With the exception of the lowest rate of AMS (161 kg ha−1; 79%), all AMS rates coated with pyroxasulfone controlled Palmer amaranth ≥83%, comparably to pyroxasulfone applied POST (92%) and POST-directed (89%). In the timing study, the application method did not affect Palmer amaranth control; however, applications made at the mid- and late timings outperformed early applications. These results indicate that pyroxasulfone-coated AMS can control Palmer amaranth comparably to pyroxasulfone applied POST and POST-directed, with minimal risk of cotton injury. However, the application timing could warrant additional treatment to achieve adequate late-season weed control.
A test statistic is introduced which allows one to test the hypothesis of agreement of several judges on the ranking of items within each of two groups and between the two groups. The groups of judges may be unequal in size. A normal approximation for the test statistic is developed. The relationship to existing techniques given by Kendall, Friedman, Page, Spearman, and Lyerly is discussed. A generalization of the coefficient of concordance is presented and the extension of the method to multi-group problems is suggested.
Response times on test items are easily collected in modern computerized testing. When collecting both (binary) responses and (continuous) response times on test items, it is possible to measure the accuracy and speed of test takers. To study the relationships between these two constructs, the model is extended with a multivariate multilevel regression structure which allows the incorporation of covariates to explain the variance in speed and accuracy between individuals and groups of test takers. A Bayesian approach with Markov chain Monte Carlo (MCMC) computation enables straightforward estimation of all model parameters. Model-specific implementations of a Bayes factor (BF) and deviance information criterium (DIC) for model selection are proposed which are easily calculated as byproducts of the MCMC computation. Both results from simulation studies and real-data examples are given to illustrate several novel analyses possible with this modeling framework.