We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Metastructures composed of a closely spaced plate array have been widely used in bespoke manipulation of waves in contexts of acoustics, electromagnetics, elasticity and water waves. This paper focuses on wave scattering by discrete plate array metastructures of arbitrary cross-sections, including isolated vertical metacylinders, periodic arrays and horizontal surface-piercing metacylinders. A suitable transform-based method has been applied to each problem to reduce the influence of barriers in a two-dimensional problem to a set of points in a one-dimensional wave equation wherein the solution is constructed using a corresponding Green's function. A key difference from the existing work is the use of an exact description of the plate array rather than an effective medium approximation, enabling the exploration of wave frequencies above resonance where homogenisation models fail but where the most intriguing physical findings are unravelled. The new findings are particularly notable for graded plate array metastructures that produce a dense spectrum of resonant frequencies, leading to broadband ‘rainbow reflection’ effects. This study provides new ideas for the design of structures for the bespoke control of waves with the potential for innovative solutions to coastal protection schemes or wave energy converters.
Spray formed by a myriad of secondary droplets generated by the impact of raindrops on a deep-water pool is studied with a laboratory rain facility. Experiments are performed with two rain rates and raindrops fall on the water surface at a nearly constant velocity. The secondary droplets at various heights above the pool's water surface are recorded with a cinematic digital in-line holographic technique that consists of a high-speed camera, a pulsed Nd:YLF laser and associated optics. The experimental results show that in the heat-map scatter plots of radius versus velocity near the water surface of the pool, the droplets are distributed into three regions, corresponding to distinct physical mechanisms of droplet generation. It is found that the diameter distribution of the droplets in the rain field changes with height above the pool's water surfaces. Both numerical simulation and experimental data reveal that the liquid water content, due to the presence of secondary droplets, in the atmospheric surface layer decreases exponentially with increasing height.
In this paper, we study wave scattering and radiation by a surface-piercing vertical truncated metamaterial cylinder composed of a closely spaced array of thin vertical barriers, between which fluid can flow. A theoretical model is developed under full depth-dependent linearised water wave theory, where an effective medium equation and effective boundary conditions are employed, respectively, to describe the fluid motion inside the cylinder and match the flow between the fluid regions in and outside the metamaterial cylinder. A damping mechanism is introduced at the surface of the fluid occupied by the metamaterial cylinder to consider the wave power dissipation in narrow gaps between the thin vertical plates. The wave excitation forces acting on the cylinder and the hydrodynamic coefficients can be calculated straightforwardly in terms of the velocity potential inside the cylinder. An alternative way is by using the velocity potential outside the cylinder, the expression of which has the reduction of the integral and an infinite accumulation that are included in the straightforward expression. The results highlight the patterns of the radiated waves induced by the oscillation of the cylinder and the characteristics of the hydrodynamic coefficients. The metamaterial cylinder when fixed in place and with a damping mechanism included is found to capture more wave power than that of a traditional axisymmetric heaving wave energy converter over a wide range of wave frequencies.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
Although federal judges are the ultimate arbiters of insider trading enforcement, the role of their political ideology in insider trading is unclear. Using the partisanship of judges’ nominating presidents to measure judge ideology, we first document that liberal judges are associated with heavier penalties in insider trading lawsuits than conservative judges. Next, we find that firms located in circuits with more liberal judges have fewer opportunistic insider sales. Cross-sectional analyses show that this deterrent effect is stronger when managers face a higher risk of insider trading lawsuits. Finally, we find that the Securities and Exchange Commission considers judges’ ideology when selecting litigation forums.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
The boundary layer thickness on a compressor blade suction surface increases rapidly under a adverse pressure gradient and even separates from the blade surface. This paper proposes a novel method for developing the slot inside the blade, with the inlet of the slot located at the leading edge of the blade and the outlet located at the suction surface, using the momentum of the incoming flow to form a high velocity jet to control the boundary layer on the suction surface. For a plane cascade with a diffusion factor of 0.45, the effects of the main slot parametres (such as the shape of the slot and the positions of the slot inlet and outlet) on the flow in the slot, the flow field and the aerodynamic performance of the cascade were investigated with a numerical method. When the aerodynamic performance of cascades with slotted and unslotted blades was compared, it was found that a reasonable slot structure can effectively inhibit the development of the boundary layer on the blade suction surface and greatly improve the aerodynamic performance of the cascade. Based on the influence of the slot parametres of the above cascade, the slot of a plane cascade with a diffusion factor of 0.60 was designed. The numerical calculation results show that the slotted cascade with a diffusion factor of 0.60 outperformed the slotted cascade with a diffusion factor of 0.45. This result showed that the higher the cascade load, the greater the performance improvement from slotting. Furthermore, the unslotted and slotted cascades were tested, and the test results agreed well with the calculations. The aerodynamic performance of the slotted cascade was better than that of the unslotted cascade, which verifies the accuracy of the calculation method and the feasibility of blade slotting for suppressing the development of boundary layers on suction surfaces and reducing flow loss.
In this paper, a concept of a floating elastic wave energy converter consisting of a disk-shaped elastic plate is proposed. The floating plate is moored to the seabed through a series of power take-off (PTO) units. A theoretical model based on the linear potential flow theory and eigenfunction matching method is developed to study the hydroelastic characteristics and evaluate wave power absorption of the device. The PTO system is simulated as a discrete PTO, and moreover, it is also modelled as a continuum PTO to represent the case when the PTO system is composed of a large number of PTO units. The continuum PTO approximation is tested against the discrete PTO simulation for accuracy. Two methods are proposed to predict the wave power absorption of the device. After running convergence analysis and model validation, the present model is employed to do a multiparameter impact analysis. The device adopting a continuum PTO system is found to capture wave power efficiently in an extensive range of wave frequencies. For the continuum PTO system, it is theoretically possible to adopt optimised PTO damper and stiffness/mass to guarantee the absorption of 100 % of the energy flux available in one circular component of the plane incident wave.
We describe the scientific goals and survey design of the First Large Absorption Survey in H i (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (H i) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of $\delta \approx +40\,\deg$ at frequencies between 711.5 and 999.5 MHz. At redshifts between $z = 0.4$ and $1.0$ (look-back times of 4 – 8 Gyr), the H i content of the Universe has been poorly explored due to the difficulty of carrying out radio surveys for faint 21-cm line emission and, at ultra-violet wavelengths, space-borne searches for Damped Lyman-$\alpha$ absorption in quasar spectra. The ASKAP wide field of view and large spectral bandwidth, in combination with a radio-quiet site, will enable a search for absorption lines in the radio spectra of bright continuum sources over 80% of the sky. This survey is expected to detect at least several hundred intervening 21-cm absorbers and will produce an H i-absorption-selected catalogue of galaxies rich in cool, star-forming gas, some of which may be concealed from optical surveys. Likewise, at least several hundred associated 21-cm absorbers are expected to be detected within the host galaxies of radio sources at $0.4 < z < 1.0$, providing valuable kinematical information for models of gas accretion and jet-driven feedback in radio-loud active galactic nuclei. FLASH will also detect OH 18-cm absorbers in diffuse molecular gas, megamaser OH emission, radio recombination lines, and stacked H i emission.
Toxic shock syndrome is an uncommon but lethal infectious disease. To date, toxic shock syndrome related to otological surgical procedures has rarely been reported.
Case report
A 43-year-old man was admitted for surgery for a discharging ear with chronic otitis media. Gelfoam and tela iodoform were used to pack the mastoid cavity. Twelve hours post-operatively, he developed a high fever, dramatic gastrointestinal symptoms, and subsequent shock without local signs of infection or meningeal irritation. Culture of ear discharge grew methicillin-resistant Staphylococcus aureus. A macular rash was noted 2 days post-operatively. The patient received aggressive fluid resuscitation, antibiotics and intensive life-sustaining treatment, and the mastoid cavity was opened to facilitate drainage. However, his condition deteriorated promptly and he died of septic shock. Multiple blood cultures showed negative results.
Conclusion
Clinicians should be vigilant for toxic shock syndrome in patients after surgery for a discharging ear with chronic otitis media, even without local signs of infection.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.
To evaluate the impacts of guanidinoacetic acid (GAA) and coated folic acid (CFA) on growth performance, nutrient digestion and hepatic gene expression, fifty-two Angus bulls were assigned to four groups in a 2 × 2 factor experimental design. The CFA of 0 or 6 mg/kg dietary DM folic acid was supplemented in diets with GAA of 0 (GAA−) or 0·6 g/kg DM (GAA+), respectively. Average daily gain (ADG), feed efficiency and hepatic creatine concentration increased with GAA or CFA addition, and the increased magnitude of these parameters was greater for addition of CFA in GAA− diets than in GAA+ diets. Blood creatine concentration increased with GAA or CFA addition, and greater increase was observed when CFA was supplemented in GAA+ diets than in GAA− diets. DM intake was unchanged, but rumen total SCFA concentration and digestibilities of DM, crude protein, neutral-detergent fibre and acid-detergent fibre increased with the addition of GAA or CFA. Acetate:propionate ratio was unaffected by GAA, but increased for CFA addition. Increase in blood concentrations of albumin, total protein and insulin-like growth factor-1 (IGF-1) was observed for GAA or CFA addition. Blood folate concentration was decreased by GAA, but increased with CFA addition. Hepatic expressions of IGF-1, phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin and ribosomal protein S6 kinase increased with GAA or CFA addition. Results indicated that the combined supplementation of GAA and CFA could not cause ADG increase more when compared with GAA or CFA addition alone.
A theoretical model based on linear potential flow theory and an eigenfunction matching method is developed to analyse the hydroelastic interaction between water waves and multiple circular floating porous elastic plates. The water domain is divided into the interior and exterior regions, representing the domain beneath each plate and the rest, which extends towards infinity horizontally, respectively. Spatial potentials in these two regions can be expressed as a series expansion of eigenfunctions. Three different types of edge conditions are considered. The unknown coefficients in the potential expressions can be determined by satisfying the continuity conditions for pressure and velocity at the interface of the two regions, together with the requirements for the motion/force at the edge of the plates. Apart from the straightforward method to evaluate the exact power dissipated by the array of porous elastic plates, an indirect method based on Green's theorem is determined. The indirect method expresses the wave-power dissipation in terms of Kochin functions. It is found that wave-power dissipation of an array of circular porous elastic plates can be enhanced by the constructive hydrodynamic interaction between the plates, and there is a profound potential of porous elastic plates for wave-power extraction. The results can be applied to a range of floating structures but have special application in modelling energy loss in flexible ice floes and wave-power extraction by flexible plate wave-energy converters.
There seems to be geographical differences in decisions about breast conserving surgery (BCS) in breast cancer patients. This study was to evaluate patients’ attitude to BCS and to assess the factors affecting cancer practice in West China.
Methods:
A structured questionnaire was distributed to 184 patients, eliciting information about the patients’ characteristics, occupation, education, family life, recognition of illness, knowledge about BCS, the main means of gaining surgery information, selecting surgery approaches, preferences to breast reservation.
Results:
In all, 163 patients completed the questionnaire. The results indicated that only 7.4% of patients received BCS and 23% of the remaining patients desired to have BCS and the affecting factors were significantly associated with their family life, recognition of illness and the main means of gaining surgery information (P < 0.05). No associations were between BCS selecting and the other variables studied. The most frequent reasons for selecting BCS were keeping the female shape and improving quality of life (71%), the second most were postoperative recovery, minimal influence of physical function (47%) and patients’ knowledge about BCS (42%). The most frequent reasons for not selecting BCS were uncertainty about BCS results and worry about recurrence (81%), the second most was the elderly age unnecessary for BCS (40%).
Conclusions:
The findings indicate that breast cancer patients in West China do not take BCS as the first choice as the best treatment method. It is warranted that further study of more patients, attitude of patients’ partners and physicians to BCS.
To introduce some questionnaires related to family environment such as FAD-GFS (The General Functioning Scale of the MacMaster Family Activity Device), SLE (stressful life events), FSQ (Family Stresses Questionnaire), FLQ (Family Life Questionnaire), EFQ (Everyday Feelings Questionnaire) and evaluate their validity and reliability.
Methods
Using cross-sectional design. The general questionnaire, FAD-GFS, SLE, FSQ, FLQ, EFQ were used to collect information about family environment from 504 parents of only children FACESII-CV and Index of General Affect were used as scale of criteria related.
Results
The reliability and validity of FAD-GFS, SLE, FSQ, FLQ, EFQ is: Cronbach coefficient were 0.695 to 0.749; re-test reliability were 0.712 to 0.901; The scores of the scale in those questionnaires were correlated with each factor significantly and the coefficient of correlation is more than those between each factor of those scales. The correlation between the scores of FSQ, EFQ and the scores of Index of General Affect was-0.192, 0.539; The correlation between the scores of FAD-GFS, FLQ the score of total and three factor differently and the scores of family cohesion scores (FACESII-CV) was -0.423, 0.237, 0.514, 0.302, 0.210.
Conclusion
FAD-GFS, SLE, FSQ, FLQ, EFQ has good reliability and validity, in line with requirements of psychometric and is useful as a tool to evaluate the family environment.