We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Parental psychopathology is a known risk factor for child autistic-like traits. However, symptom-level associations and underlying mechanisms are poorly understood.
Methods
We utilized network analyses and cross-lagged panel models to investigate the specific parental psychopathology related to child autistic-like traits among 8,571 adolescents (mean age, 9.5 years at baseline), using baseline and 2-year follow-up data from the Adolescent Brain Cognitive Development study. Parental psychopathology was measured by the Adult Self Report, and child autistic-like traits were measured by three methods: the Kiddie Schedule for Affective Disorders and Schizophrenia for DSM-5 autism spectrum disorder (ASD) subscale, the Child Behavior Checklist ASD subscale, and the Social Responsiveness Scale. We also examined the mediating roles of family conflict and children’s functional brain connectivity at baseline.
Results
Parental attention-deficit/hyperactivity problems were central symptoms and had a direct and the strongest link with child autistic-like traits in network models using baseline data. In longitudinal analyses, parental attention-deficit/hyperactivity problems at baseline were the only significant symptoms associated with child autistic-like traits at 2-year follow-up (β = 0.014, 95% confidence interval [0.010, 0.018], FDR q = 0.005), even accounting for children’s comorbid behavioral problems. The observed association was significantly mediated by family conflict (proportion mediated = 11.5%, p for indirect effect <0.001) and functional connectivity between the default mode and dorsal attention networks (proportion mediated = 0.7%, p for indirect effect = 0.047).
Conclusions
Parental attention-deficit/hyperactivity problems were associated with elevated autistic-like traits in offspring during adolescence.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
External seeded free-electron lasers (FELs) have exhibited substantial progress in diverse applications over the last decade. However, the frequency up-conversion efficiency in single-stage seeded FELs, particularly in high-gain harmonic generation (HGHG), remains constrained to a modest level. This limitation restricts its capability to conduct experiments within the ‘water window’. This paper presents a novel method for generating coherent X-ray FEL pulses in the water window region based on the HGHG scheme with multi-stage harmonic cascade. Without any additional modifications to the HGHG configuration, simulation results demonstrate the generation of intense 3 nm coherent FEL radiation using an external ultraviolet seed laser. This indicates an increase of the harmonic conversion number to approximately 90. A preliminary experiment is performed to evaluate the feasibility of this method. The proposed approach could potentially serve as an efficient method to broaden the wavelength coverage accessible to both existing and planned seeded X-ray FEL facilities.
This article addresses the localization problem in robotic autonomous luggage trolley collection at airports and provides a systematic evaluation of different methods to solve it. The robotic autonomous luggage trolley collection is a complex system that involves object detection, localization, motion planning and control, manipulation, etc. Among these components, effective localization is essential for the robot to employ subsequent motion planning and end-effector manipulation because it can provide a correct goal position. This article explores four popular and representative localization methods for object localization in luggage trolley collection: radio frequency identification (RFID), Keypoints, ultrawideband (UWB), and Reflectors. A qualitative evaluation framework is constructed to assess performance, encompassing Localization Accuracy, Mobile Power Supplies, Coverage Area, Cost, and Scalability. Furthermore, a series of quantitative experiments concerning Localization Accuracy and Success Rate have been conducted on a real-world robotic autonomous luggage trolley collection system. The performance of various localization methods is further analyzed based on experimental results, indicating that the Keypoints method is optimally suited for indoor environments to facilitate luggage trolley collection. Significantly, these experiment results provide a valuable reference point, extending the application of indoor localization methods across diverse scenarios. A website about this work is available at https://sites.google.com/view/localization-evaluation/.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Growing evidence indicates a link between diet and depression risk. We aimed to examine the association between an inflammatory diet index and depression utilising extensive data from UK biobank cohort. The energy-adjusted dietary inflammation index (E-DII) was calculated to quantify the potential of daily diet, with twenty-seven food parameters utilised. The E-DII scores were classified into two categories (low v. high) based on median value. To mitigate bias and ensure comparability of participant characteristics, propensity score matching was employed. To ascertain the robustness of these associations, sensitivity analyses were conducted. Subgroup analyses were performed to evaluate the consistency of these associations within different subpopulations. Totally, 152 853 participants entered the primary analyses with a mean age of 56·11 (sd 7·98) years. Employing both univariate and multivariate logistic regression models, adjustments were made for varying degrees of confounding factors (socio-demographics, lifestyle factors, common chronic medical conditions including type 2 diabetes and hypertension). Results consistently revealed a noteworthy positive correlation between E-DII and depression. In the context of propensity score matching, participants displaying higher E-DII scores exhibited an increased likelihood of experiencing incident depression (OR = 1·12, 95 % CI: 1·05, 1·19; P = 0·000316). Subgroup analysis results demonstrated variations in these associations across diverse subpopulations. The E-value for the point-estimate OR calculated from the propensity score matching dataset was 1·48. Excluding individuals diagnosed with type 2 diabetes or hypertension, the findings consistently aligned with the positive association in the primary analysis. These findings suggested that consumption of a diet with higher pro-inflammatory potential might associated with an increase of future depression risk.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
A new vacuum line to extract CO2 from carbonate and dissolved inorganic carbon (DIC) in water was established at Guangxi Normal University. The vacuum line consisted of two main components: a CO2 bubble circulation region and a CO2 purification collection region, both of which were made of quartz glass and metal pipelines. To validate its reliability, a series of carbonate samples were prepared using this system. The total recovery rate of CO2 extraction and graphitization exceeded 80%. Furthermore, the carbon content in calcium carbonate exhibited a linear relationship with the CO2 pressure within the system, demonstrating its stability and reliability. The system was also employed to prepare and analyze various samples, including calcium carbonate blanks, foraminiferal, shell, groundwater, and subsurface oil-water samples. The accelerator mass spectrometry (AMS) results indicated that the average beam current for 12C- in the samples exceeded 40 μA. Additionally, the contamination introduced during the liquid sample preparation process was approximately (1.77 ± 0.57) × 10−14. Overall, the graphitized preparation system for carbonate and DIC in water exhibited high efficiency and recovery, meeting the requirements for samples dating back to approximately 30,000 years.
Autonomous fabric manipulation is a challenging task due to complex dynamics and potential self-occlusion during fabric handling. An intuitive method of fabric-folding manipulation first involves obtaining a smooth and unfolded fabric configuration before the folding process begins. However, the combination of quasi-static actions like pick & place and dynamic action like fling proves inadequate in effectively unfolding long-sleeved T-shirts with sleeves mostly tucked inside the garment. To address this limitation, this paper introduces an enhanced quasi-static action called pick & drag, specifically designed to handle this type of fabric configuration. Additionally, an efficient dual-arm manipulation system is designed in this paper, which combines quasi-static (including pick & place and pick & drag) and dynamic fling actions to flexibly manipulate fabrics into unfolded and smooth configurations. Subsequently, once it is confirmed that the fabric is sufficiently unfolded and all fabric keypoints are detected, the keypoint-based heuristic folding algorithm is employed for the fabric-folding process. To address the scarcity of publicly available keypoint detection datasets for real fabric, we gathered images of various fabric configurations and types in real scenes to create a comprehensive keypoint dataset for fabric folding. This dataset aims to enhance the success rate of keypoint detection. Moreover, we evaluate the effectiveness of our proposed system in real-world settings, where it consistently and reliably unfolds and folds various types of fabrics, including challenging situations such as long-sleeved T-shirts with most parts of sleeves tucked inside the garment. Specifically, our method achieves a coverage rate of 0.822 and a success rate of 0.88 for long-sleeved T-shirts folding. Supplemental materials and dataset are available on our project webpage at https://sites.google.com/view/fabricfolding.
A laser stripe sensor has two kinds of calibration methods. One is based on the homography model between the laser stripe plane and the image plane, which is called the one-step calibration method. The other is based on the simple triangular method, which is named as the two-step calibration method. However, the geometrical meaning of each element in the one-step calibration method is not clear as that in the two-step calibration method. A novel mathematical derivation is presented to reveal the geometrical meaning of each parameter in the one-step calibration method, and then the comparative study of the one-step calibration method and the two-step calibration method is completed and the intrinsic relationship is derived. What is more, a one-step calibration method is proposed with 7 independent parameters rather than 11 independent parameters. Experiments are conducted to verify the accuracy and robust of the proposed calibration method.
Ion adsorption-type rare earth deposits (IADs) are developed via prolonged weathering of REE-rich volcanic and metamorphic rocks. Intense magmatic activity which occurred during the Yanshanian (199.6–65.5 Ma) and Caledonian periods (542–359.2 Ma) provided an abundant material basis for the formation of IADs in South China. High concentrations of REE and the high proportion of ion-exchangeable REE were found in the Maofeng Mountain regolith, Guangzhou city. However, the geochemical patterns and mechanisms of REE enrichment in the regolith were still poorly understood. The present study investigated the regolith profile (0–8 m) developed in Maofeng Mountain based on metallogenic and geochemical characteristics, sequential extraction, and physical and chemical parameters of the regolith profile. The bedrock contained abundant REE resources (245–287 mg kg–1) and the chondrite-normalized REE patterns showed the enrichment of light REE (LREE) and negative cerium (Ce) and europium (Eu) anomalies. The distribution patterns of REE in the bedrock were inherited by the regolith. REE enrichment of the regolith occurred mainly in the completely weathered layer (B1, B2, and B3 horizons), particularly in the depth range 2.5–4.5 m (849–2391 mg kg–1). The position of REE enrichment was controlled by the soil pH (5.52–6.02), by the amount of kaolinite and halloysite, and by the permeability of the metamorphic rock. In the REE-enriched horizon (2–8 m), the REE were hosted mainly in ion-exchangeable fractions (75–2158 mg kg–1), representing 79% of the total REE. Given the pH of 4.73–6.02, REE fractionation driven by the adsorption of kaolinite was limited. Fe–Mn (oxyhydr)oxides played an important role in REE enrichment and the reducible fraction holds up to 21% (139 mg kg–1) of the total REE. The enrichment of LREE was observed in the reducible fraction potentially because of the preferential release of LREE from the LREE-bearing minerals (monazite) and then scavenged by Fe–Mn (oxyhydr)oxides. Positive Ce anomalies (Ce/Ce*: 10) were found in the reducible fraction because trivalent Ce was oxidized by Fe–Mn (oxyhydr)oxides to cerianite (CeO2). The present study helps to understand the enrichment and fractionation of REE in the IADs of South China.
Adsorption of uranyl (UO22+) ions to mineral surfaces is a potentially effective method for removing this hazardous metal from water, but other toxic trace metal ions (Xn+: Rb+, Sr2+, Cr3+, Mn2+, Ni2+, Zn2+, Cd2+) in uraniferous wastewaters compete with UO22+ for adsorption sites and thus may diminish the capacity of adsorbents to sequester UO22+. A better understanding of competitive adsorption among these metal ions and the development of better adsorbents are, therefore, of critical importance. The purpose of the present study was to synthesize and characterize magnetic adsorbents, consisting of MFe2O4 (M = Mn, Fe, Zn, Co, or Ni) nanoparticles synthesized on montmorillonite (Mnt) edge sites, and to investigate their use as adsorbents for UO22+, including competitive adsorption with trace metal ions. Selective adsorption was studied using Langmuir, Freundlich, and Dubinin-Radushkevich isotherms, and the results showed that Xn+ ions were adsorbed primarily on MFe2O4-montmorillonite surfaces, and the UO22+ ions were adsorbed on the interfaces between montmorillonite edge surfaces and MFe2O4 nanoparticles. Using the Freundlich model, the interface adsorption capacity of UO22+ reached 25.1 mg·g–1 in mixed solution. Further, the UO22+ and Cr3+ ions had a redox reaction on the interfaces with synergistic adsorption. Herein, the adsorption capacity of Cr3+ was 60.2 mg·g–1 using the Freundlich isotherm. The results demonstrated that the MFe2O4-montmorillonite with highly selective adsorption of UO22+ ions is applicable to UO22+ treatment in the presence of toxic trace metal ions.
In order to minimize the initial energy storage of tens of MA-class Z-pinch accelerators, an intelligent optimization method was developed based on the transmission line code circuit model and PSOGSA algorithm. Using several input parameters, the four overall parameters of the Z-pinch accelerator could be fast determined, including the connection and parallel combination of LTD cavities, the outer radius of the stack-MITL system, and electrical length of monolithic radial transmission lines. The optimization method has been verified by comparing the results with the Z-300 and Z-800 conceptual designs. By means of this intelligent optimization, some factors that affect the initial energy storage on high-current Z-pinch accelerators have been investigated, such as the operating electrical fields, the diameter of the stack-MITL system, and the inner diameter of the LTD cavity. The suggestions for designing relatively low-cost, efficient LTD-based accelerators have been proposed.
Direct numerical simulations are performed to explore the effects of the rotating direction of the vertically asymmetric rough wall on the transport properties of Taylor–Couette (TC) flow, up to a Taylor number of ${Ta} = 2.39\times 10^{7}$. It is shown that, compared with the smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless torque ${Nu}_{\omega }$. More importantly, at high Ta, clockwise rotation of the inner rough wall (where the fluid is sheared by the steeper slope side of the strips) results in a significantly greater torque enhancement compared to counter-clockwise rotation (where the fluid is sheared by the smaller slope side of the strips), due to the larger convective contribution to the angular velocity flux. However, the rotating direction has a negligible effect on the torque at low Ta. The larger torque enhancement caused by the clockwise rotation of the vertically asymmetric rough wall at high Ta is then explained by the stronger coupling between the rough wall and the bulk, attributed to the larger biased azimuthal velocity towards the rough wall at the mid-gap of the TC system, the increased turbulence intensity manifested by larger Reynolds stress and a thinner boundary layer, and the more significant contribution of the pressure force on the surface of the rough wall to the torque.
Carotenoids are important bioactive substances in breast milk, the profile of which is seldom studied. This study aimed to explore the profile of carotenoids in breast milk and maternal/cord plasma of healthy mother–neonate pairs in Shanghai, China, and their correlation with dietary intake. Maternal blood, umbilical cord blood and breast milk samples from five lactation stages (colostrum, transitional milk and early-, mid- and late-term mature milk) were collected. Carotenoid levels were analysed by HPLC. Carotenoid levels in breast milk changed as lactation progressed (P < 0·001). β-Carotene was the primary carotenoid in colostrum. Lutein accounted for approximately 50 % of total carotenoids in transitional milk, mature milk and cord blood. Positive correlations were observed between five carotenoids in umbilical cord blood and maternal blood (P all < 0·001). β-Carotene levels were also correlated between maternal plasma and three stages of breast milk (r = 0·605, P < 0·001; r = 0·456, P = 0·011, r = 0·446; P = 0·013, respectively). Dietary carotenoid intakes of lactating mothers also differed across lactation stages, although no correlation with breast milk concentrations was found. These findings suggest the importance of exploring the transport mechanism of carotenoids between mothers and infants and help guide the development of formulas for Chinese infants as well as the nutritional diets of lactating mothers.
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
This paper presents a kinematics modeling and hybrid motion planning framework for wheeled-legged rovers. It is a unified solution for wheeled-legged rovers to traverse multiple challenging terrains using hybrid locomotion. A kinematic model is first established to describe the rover’s motions. Then, a hybrid motion planning framework is proposed to determine the rover’s gait patterns and parameterize the legs’ and the body’s trajectories. Furthermore, an optimization algorithm based on B-spline is utilized to minimize the motors’ energy dissipation and generate smooth trajectories. The wheeled and legged hybridization allows the rover for faster locomotion while maintaining high stability. Besides, it also improves the rover’s ability to overcome obstacles. Prototype experiments are carried out in more complex environments to verify the rover’s flexibility and maneuverability to traverse irregular terrains. The proposed algorithm reduces the swing amplitude by 83.3% compared to purely legged locomotion.
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
SARS-CoV-2 rapidly spreads among humans via social networks, with social mixing and network characteristics potentially facilitating transmission. However, limited data on topological structural features has hindered in-depth studies. Existing research is based on snapshot analyses, preventing temporal investigations of network changes. Comparing network characteristics over time offers additional insights into transmission dynamics. We examined confirmed COVID-19 patients from an eastern Chinese province, analyzing social mixing and network characteristics using transmission network topology before and after widespread interventions. Between the two time periods, the percentage of singleton networks increased from 38.9$ \% $ to 62.8$ \% $$ (p<0.001) $; the average shortest path length decreased from 1.53 to 1.14 $ (p<0.001) $; the average betweenness reduced from 0.65 to 0.11$ (p<0.001) $; the average cluster size dropped from 4.05 to 2.72 $ (p=0.004) $; and the out-degree had a slight but nonsignificant decline from 0.75 to 0.63 $ (p=0.099). $ Results show that nonpharmaceutical interventions effectively disrupted transmission networks, preventing further disease spread. Additionally, we found that the networks’ dynamic structure provided more information than solely examining infection curves after applying descriptive and agent-based modeling approaches. In summary, we investigated social mixing and network characteristics of COVID-19 patients during different pandemic stages, revealing transmission network heterogeneities.