We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The incorporation of trace metals into land snail shells may record the ambient environmental conditions, yet this potential remains largely unexplored. In this study, we analyzed modern snail shells (Cathaica sp.) collected from 16 sites across the Chinese Loess Plateau to investigate their trace metal compositions. Our results show that both the Sr/Ca and Ba/Ca ratios exhibit minimal intra-shell variability and small inter-shell variability at individual sites. A significant positive correlation is observed between the shell Sr/Ca and Ba/Ca ratios across the plateau, with higher values being recorded in the northwestern sites where less monsoonal rainfall is received. We propose that shell Sr/Ca and Ba/Ca ratios, which record the composition of soil solution, may be controlled by the Rayleigh distillation in response to prior calcite precipitation. Higher rainfall amounts may lead to a lower degree of Rayleigh distillation and thus lower shell Sr/Ca and Ba/Ca ratios. This is supported by the distinct negative correlation between summer precipitation and shell Sr/Ca and Ba/Ca ratios, enabling us to reconstruct summer precipitation amounts using the Sr/Ca and Ba/Ca ratios of Cathaica sp. shells. The potential application of these novel proxies may also be promising for other terrestrial mollusks living in the loess deposits globally.
Existing evidence on the association between combined lifestyle and depressive symptoms is limited to the general population and is lacking in individuals with subthreshold depression, a high-risk group for depressive disorders. Furthermore, it remains unclear whether an overall healthy lifestyle can mitigate the association between childhood trauma (CT) and depressive symptoms, even in the general population. We aimed to explore the associations of combined lifestyle, and its interaction with CT, with depressive symptoms and their subtypes (i.e. cognitive-affective and somatic symptoms) among adults with subthreshold depression.
Methods
This dynamic cohort was initiated in Shenzhen, China in 2019, including adults aged 18–65 years with the Patient Health Questionnaire-9 (PHQ-9) score of ≥ 5 but not diagnosed with depressive disorders at baseline. CT (present or absent) was assessed with the Childhood Trauma Questionnaire-Short Form. Combined lifestyle, including no current drinking, no current smoking, regular physical exercise, optimal sleep duration and no obesity, was categorized into 0–2, 3 and 4–5 healthy lifestyles. Depressive symptoms were assessed using the PHQ-9 during follow-up. This cohort was followed every 6 months, and as of March 2023, had been followed for 3.5 years.
Findings
This study included 2298 participants (mean [SD] age, 40.3 [11.1] years; 37.7% male). After fully adjusting for confounders, compared with 0–2 healthy lifestyles, 3 (β coefficient, −0.619 [95% CI, −0.943, −0.294]) and 4–5 (β coefficient, −0.986 [95% CI, −1.302, −0.671]) healthy lifestyles were associated with milder depressive symptoms during follow-up. There exists a significant synergistic interaction between a healthy lifestyle and the absence of CT. The CT-stratified analysis showed that compared with 0–2 healthy lifestyles, 3 healthy lifestyles were associated with milder depressive symptoms in participants with CT, but not in those without CT, and 4–5 healthy lifestyles were associated with milder depressive symptoms in both participants with and without CT, with a stronger association in those with CT. The lifestyle-stratified analysis showed that CT was associated with more severe depressive symptoms in participants with 0–2 healthy lifestyles, but not in those with 3 or 4–5 healthy lifestyles. Cognitive-affective and somatic symptoms showed similar results.
Conclusions
In this 3.5-year longitudinal study of adults with subthreshold depression, an overall healthy lifestyle was associated with subsequent milder depressive symptoms and their subtypes, with a stronger association in adults with CT than those without CT. Moreover, an overall healthy lifestyle mitigated the association of CT with depressive symptoms and their subtypes.
Cavitation bubble pulsation and liquid jet loads are the main causes of hydraulic machinery erosion. Methods to weaken the load influences have always been hot topics of related research. In this work, a method of attaching a viscous layer to a rigid wall is investigated in order to reduce cavitation pulsations and liquid jet loads, using both numerical simulations and experiments. A multiphase flow model incorporating viscous effects has been developed using the Eulerian finite element method (EFEM), and experimental methods of a laser-induced bubble near the viscous layer attached on a rigid wall have been carefully designed. The effects of the initial bubble–wall distance, the thickness of the viscous layer, and the viscosity on bubble pulsation, migration and wall pressure load are investigated. The results show that the bubble migration distance, the normalised thickness of the oil layer and the wall load generally decrease with the initial bubble–wall distance or the oil-layer parameters. Quantitative analysis reveals that when the initial bubble–wall distance remains unchanged, there exists a demarcation line for the comparison of the bubble period and the reference period (the bubble period without viscous layer under the same initial bubble–wall distance), and a logarithmic relationship is observed that $\delta \propto \log_{10} \mu ^*$, where $\delta =h/R_{max}$ is the thickness of the viscous layer h normalised by the maximum bubble radius $R_{max}$, $\mu ^* = \mu /({R_{max }}\sqrt {{\rho }{{\mathop {P}\nolimits } _{{atm}}}})$ is the dynamic viscosity $\mu$ normalised by water density $ \rho $ and atmospheric pressure $P_{atm}$. The results of this paper can provide technical support for related studies of hydraulic cavitation erosion.
Görtler vortices induced by concave curvature in supersonic turbulent flows are investigated using resolvent analysis and large-eddy simulations at Mach 2.95 and Reynolds number $ Re_{\delta }=63\,500$ based on the boundary-layer thickness $ \delta$. Resolvent analysis reveals that the most amplified coherent structures manifest as streamwise counter-rotating vortices with optimal spanwise wavelength $ 2.4\delta$ at cut-off frequency $f\delta /{u}_{\infty } =0.036$, where $ {u}_{\infty }$ is the freestream velocity. The leading spectral proper orthogonal decomposition modes with spanwise wavelength approximately $ 2\delta$ align well with the predicted coherent structures from resolvent analysis at $f\delta /{u}_{\infty } =0.036$. These predicted and extracted coherent structures are identified as Görtler vortices, driven by the Görtler instability. The preferential spanwise scale of the Görtler vortices is further examined under varying geometric and freestream parameters. The optimal spanwise wavelength is insensitive to the total turning angle beyond a critical value, but sensitive to the concave curvature $ K$ at the same turning angle. A limit spanwise wavelength $ 1.96\delta$, corresponding to an infinite concave curvature as $ K\rightarrow \infty$, is identified and validated. Increasing the freestream Mach number or decreasing the ratio of wall temperature to freestream temperature reduces the optimal wavelength normalised by $ \delta$, while variations in freestream Reynolds number have negligible impact. Additionally, a modified definition of the turbulent Görtler number $ G_{T}$ based on the peak eddy viscosity in boundary layers is proposed and employed to assess the occurrence of Görtler instability.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
Flow over bluff bodies encounters instability at supercritical Reynolds numbers, exhibiting the periodic vortex shedding that leads to structural vibrations and acoustic noise. In this paper, a new aerodynamic shape optimisation strategy based on resolvent analysis is proposed to passively control the vortex shedding over two-dimensional cylinders. Firstly, we show that when the flow satisfies the rank-1 approximation, minimizing the maximal resolvent gain enhances flow stability. Secondly, we formulate the geometry-constrained resolvent-based optimisation problem that can be solved by the nonlinear conjugate gradient algorithm. Compared with conventional stability-based optimisation, the proposed approach is more effective as it avoids the cumbersome eigendecomposition of the high-dimensional Jacobian matrix. The efficacy of the proposed resolvent-based optimisation is validated through improving the stability of the one-dimensional Ginzburg–Landau equation. Thirdly, this approach is applied to suppress the vortex shedding of bluff bodies, initialised by a circular cylinder. Although the optimisation is performed at a subcritical state $Re = 40$, reduced vortex shedding and drag forces can be achieved at supercritical Reynolds numbers, while the critical Reynolds number is extended from $47$ to $60$. Dynamic mode decomposition is then performed to reveal that the optimised system becomes more stable and satisfies the rank-1 approximation. Finally, we demonstrate that the combined effects of the flattened surface and the Coanda effect delay flow separation, keeping the separation point nearly unchanged at supercritical Reynolds numbers (e.g. between 80 and 140) for the optimised geometry. This results in a substantial reduction in the strength of vortex shedding, which in turn leads to decreased drag forces. The optimised shape still achieves drag reduction in turbulent flows at a relatively high Reynolds number.
While there is evidence that childhood maltreatment (CM) is positively associated with drug use (DU), the strength and difference of the association between CM and its subtypes (hereafter CM + ST) and DU remains to be further explored. A multilevel meta-analysis was conducted on 101 independent studies reporting 333 effect sizes (N = 132,341; Mage = 24.65; 43.80%males). Results showed significantly positive correlations between CM + ST and DU (range from 0.109 to 0.185). The results of the subgroup analysis revealed notable disparities in the correlations between distinct CM subtypes and DU (F = 5.358, P<0.01). Specifically, the effect size for childhood sexual abuse (CSA) was significantly lower than childhood emotional maltreatment (CEM) and childhood physical maltreatment (CPM), while no significant difference was noted between the CEM and CPM groups. These effect sizes also varied across regions, drug types, gender, detection rate of CM, the presence or absence of alcohol in substances, publication status and measurement method. The significant yet differing correlations between different subtypes of CM and DU to some extent support the principle of equality in psychopathology. These findings help explain the relationship between CM + ST and DU laying the groundwork for further research into the intricate and complex associations between CM and DU.
This study explores an interesting fluid–structure interaction scenario: the flow past a flexible filament fixed at two ends. The dynamic performance of the filament under various inclination angles ($\theta$) was numerically investigated using the immersed boundary method. The motion of the filament in the $\theta$–$Lr$ space was categorised into three flapping modes and two stationary modes, where $Lr$ is the ratio of filament length to the distance between its two ends. The flow fields for each mode and their transitions were introduced. A more in-depth analysis was carried out for flapping at a large angle (FLA mode), which is widely present in the $\theta$–$Lr$ space. The maximum width $W$ of the time-averaged shape of the filament has been shown to strongly correlate with the flapping frequency. After non-dimensionalising based on $W$, the flapping frequency shows little variation across different $Lr$ and $\theta$. Moreover, two types of lift variation process were also identified. Finally, the total lift, drag and lift-to-drag ratio of the system were studied. Short filaments, such as those with $Lr\leqslant 1.5$, were shown to significantly increase lift and the lift-to-drag ratio over a wide range of $\theta$ compared with a rigid plate. Flow field analysis concluded that the increases in pressure difference on both sides of the filament, along with the upper part of the flexible filament having a normal direction closer to the $y$ direction, were the primary reasons for the increase in lift and lift-to-drag ratio. This study can provide some guidance for the potential applications of flexible structures.
Coherent combining of several low-energy few-cycle beams offers a reliable and feasible approach to producing few-cycle laser pulses with energies exceeding the multi-joule level. However, time synchronization and carrier-envelope phase difference (ΔCEP) between pulses significantly affect the temporal waveform and intensity of the combined pulse, requiring precise measurement and control. Here, we propose a concise optical method based on the phase retrieval of spectral interference and quadratic function symmetry axis fitting to simultaneously measure the time synchronization and ΔCEP between few-cycle pulses. The control precision of our coherent beam combining system can achieve a time delay stability within 42 as and ΔCEP measurement precision of 40 mrad, enabling a maximum combining efficiency of 98.5%. This method can effectively improve the performance and stability of coherent beam combining systems for few-cycle lasers, which will facilitate the obtaining of high-quality few-cycle lasers with high energy.
Aphis gossypii Glover (Hemiptera: Aphididae) is a significant pest of Capsicum annuum (Solanales: Solanaceae) and exhibits intraspecific differentiation within populations. To investigate the adaptability of Hap3 and Hap17 A. gossypii to various C. annuum varieties, including ‘Lvzhou101’ (LZ), ‘Lashen’ (LA), ‘Saierweilvtianjiao’ (SE), ‘Haimaihongri’ (HM), ‘Chaotianjiao’ (CT), and ‘Luosijiangjun’ (LS), we employed life tables to analyse growth and population parameters post-feeding and conducted petri dish host choice experiments to assess the host plant preference of A. gossypii. Survival rates of A. gossypii varied significantly across C. annuum varieties. Notably, Hap3 and Hap17 thrived on ‘LZ’ but failed to establish populations on ‘LA’. The net reproductive rate (R0), average generation time (T), and intrinsic rate of increase (rm) differed markedly between Hap3 and Hap17 across C. annuum varieties. Feeding on ‘LZ’ resulted in a significantly higher R0 value (26.49) for Hap3 relative to other varieties. The T (7.60 days) and rm (0.27) values for Hap3 on ‘SE’ were superior to those observed on other C. annuum varieties. These findings indicate that ‘SE’ is the optimal host for Hap3 growth, while ‘LZ’ best supports Hap17. Both haplotypes exhibited the lowest adaptability to ‘LA’. Therefore, the utilisation capacity of A. gossypii populations on C. annuum demonstrates differentiation, and the resistance levels among C. annuum varieties to A. gossypii vary. This differentiation can inform targeted management strategies for aphid infestations on pepper crops.
Recent experiments and simulations have sparked growing interest in the study of Rayleigh–Bénard convection in very slender cells. One pivotal inquiry arising from this interest is the elucidation of the flow structure within these very slender cells. Here we employ tomographic particle image velocimetry, for the first time, to capture experimentally the full-field three-dimensional and three-component velocity field in a very slender cylindrical cell with aspect ratio $\Gamma =1/10$. The experiments cover a Rayleigh number range $5.0 \times 10^8 \leqslant Ra \leqslant 5.0 \times 10^9$ and Prandtl number 5.7. Our experiments reveal that the flow structure in the $\Gamma =1/10$ cell is neither in the multiple-roll form nor in the simple helical form; instead, the ascending and descending flows can intersect and cross each other, resulting in the crossing events. These crossing events separate the flow into segments; within each segment, the ascending and descending flows ascend or descend side by side vertically or in the twisting manner, and the twisting is not unidirectional, while the segments near the boundary can also be in the form of a donut like structure. By applying the mode decomposition analyses to the measured three-dimensional velocity fields, we identified the crossing events as well as the twisting events for each instantaneous flow field. Statistical analysis of the modes reveals that as $Ra$ increases, the average length of the segments becomes smaller, and the average number of segments increases from 2.5 to 3.9 in the $Ra$ range of our experiments.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
Depression has been linked to disruptions in resting-state networks (RSNs). However, inconsistent findings on RSN disruptions, with variations in reported connectivity within and between RSNs, complicate the understanding of the neurobiological mechanisms underlying depression.
Methods
A systematic literature search of PubMed and Web of Science identified studies that employed resting-state functional magnetic resonance imaging (fMRI) to explore RSN changes in depression. Studies using seed-based functional connectivity analysis or independent component analysis were included, and coordinate-based meta-analyses were performed to evaluate alterations in RSN connectivity both within and between networks.
Results
A total of 58 studies were included, comprising 2321 patients with depression and 2197 healthy controls. The meta-analysis revealed significant alterations in RSN connectivity, both within and between networks, in patients with depression compared with healthy controls. Specifically, within-network changes included both increased and decreased connectivity in the default mode network (DMN) and increased connectivity in the frontoparietal network (FPN). Between-network findings showed increased DMN–FPN and limbic network (LN)–DMN connectivity, decreased DMN–somatomotor network and LN–FPN connectivity, and varied ventral attention network (VAN)–dorsal attentional network (DAN) connectivity. Additionally, a positive correlation was found between illness duration and increased connectivity between the VAN and DAN.
Conclusions
These findings not only provide a comprehensive characterization of RSN disruptions in depression but also enhance our understanding of the neurobiological mechanisms underlying depression.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
With the escalating laser peak power, modulating and detecting the intensity, duration, phase and polarization of ultra-intense laser pulses progressively becomes increasingly arduous due to the limited damage thresholds of conventional optical components. In particular, the generation and detection of ultra-intense vortex lasers pose great challenges for current laser technologies, which has limited the widely potential applications of relativistic vortex lasers in various domains. In this study, we propose to reconstruct the vortex phase and generate and amplify the relativistic vortex lasers via surface plasma holograms (SPHs). By interfering with the object laser and reference laser, SPHs are formed on the target and the phase of the interfering laser is imprinted through the modulation of surface plasma density. In particular, using the quadrature phase-shift interference, the vortex phase of the object laser can be well reconstructed. The generated vortex lasers can be focused and enhanced further by one order of magnitude, up to $1.7\times {10}^{21}$ W/cm${}^2$, which has been demonstrated by full three-dimensional particle-in-cell simulations. For the first time, we provide a practical way to detect the phase of relativistic vortex lasers, which can be applied in large 1–10 PW laser facilities. This will promote future experimental research of vortex-laser–plasma interaction and open a new avenue of plasma optics in the ultra-relativistic regime.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
The Northwest Tibet region is defined by several terranes, magmatic belts, basins and sutures, which were primarily shaped by the tectonic activities associated with Proto-, Palaeo- and Neo-Tethys Oceans. However, the basement nature and Precambrian tectonic evolution of the Northwest Tibet region, particularly within the Tashikuergan-Tianshuihai terrane, remain largely unknown. The Hongliutan area, located in the northeastern part of the Tashikuergan-Tianshuihai terrane, contains a critical sequence of Precambrian metamorphic rock strata. Detailed petrological, geochronological, and geochemical analyses of these metamorphic rocks – including plagioclase schist, quartz schist, amphibolite and nearby leucogranite – reveal the intricate processes of tectonic evolution within the Tianshuihai unit. Combining these findings with previous geochronological results is crucial for re-evaluating the nature of the Tashikuergan-Tianshuihai basement and its Precambrian tectonic evolution of the Tashikuergan-Tianshuihai basement. Our results reveal the following: (1) the leucogranite and amphibolite, identified as Cambrian igneous rocks, display distinct geochemical signatures indicative of a continental arc origin. These include calc-alkaline characteristics, enrichment in Th, U, Pb, Zr and Hf and depletion in Ba, Nb, Sr and Ti. Their εNd(t) values, close to zero, further support this tectonic setting, with the leucogranite and amphibolite formed at 506 and 522 Ma, respectively. (2) The plagioclase schist and quartz schist are interpreted to be Neoproterozoic volcaniclastic rocks that formed in a rifted (passive) continental margin setting. The quartz schist is particularly rich in detrital zircons, displaying a broad spectrum of 207Pb/206Pb ages, ranging from 901 to 3364 Ma. (3) A significant subset of detrital zircons within the quartz schist exhibits oscillatory zoning, high Th/U ratios and sharp-edged, anhedral-to-subhedral crystal forms, suggesting a derivation from proximal or deep-seated terranes. The concordant U–Pb zircon ages of 2468 and 974 Ma from the quartz schist, along with the 978 Ma age from the inherited zircons in the amphibolite, and the 1.2–2.1 Ga T2DM(Nd) from leucogranite and metamorphic rocks, collectively suggest that the Tianshuihai unit is likely underpinned by a Palaeoproterozoic basement that indicates Neoproterozoic reworking.
Therefore, our findings suggest the presence of a continuous, northwest-southeast trending Palaeoproterozoic basement underlying the entire Tashikuergan-Tianshuihai terrane. An alternative scenario posits that the ancient basement, currently beneath the Tashikuergan terrane, could extend into the Tianshuihai region, potentially indicating a Cambrian continental margin arc interspersed with remnants of older terranes.
Soft robots show an advantage when conducting tasks in complex environments due to their enormous flexibility and adaptability. However, soft robots suffer interactions and nonlinear deformation when interacting with soft and fluid materials. The reason behind is the free boundary interactions, which refers to undetermined contact between soft materials, specifically containing nonlinear deformation in air and nonlinear interactions in fluid for soft robot simulation. Therefore, we propose a new approach using material point method (MPM), which can solve the free boundary interactions problem, to simulate soft robots under such environments. The proposed approach can autonomously predict the flexible and versatile behaviors of soft robots. Our approach entails incorporating automatic differentiation into the algorithm of MPM to simplify the computation and implement an efficient implicit time integration algorithm. We perform two groups of experiments with an ordinary pneumatic soft finger in different free boundary interactions. The results indicate that it is possible to simulate soft robots with nonlinear interactions and deformation, and such environmental effects on soft robots can be restored.