We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New Zealand and Australian governments rely heavily on voluntary industry initiatives to improve population nutrition, such as voluntary front-of-pack nutrition labelling (Health Star Rating [HSR]), industry-led food advertising standards, and optional food reformulation programmes. Research in both countries has shown that food companies vary considerably in their policies and practices on nutrition(1). We aimed to determine if a tailored nutrition support programme for food companies improved their nutrition policies and practices compared with control companies who were not offered the programme. REFORM was a 24-month, two-country, cluster-randomised controlled trial. 132 major packaged food/drink manufacturers (n=96) and fast-food companies (n=36) were randomly assigned (2:1 ratio) to receive a 12-month tailored support programme or to the control group (no intervention). The intervention group was offered a programme designed and delivered by public health academics comprising regular meetings, tailored company reports, and recommendations and resources to improve product composition (e.g., reducing nutrients of concern through reformulation), nutrition labelling (e.g., adoption of HSR labels), marketing to children (reducing the exposure of children to unhealthy products and brands) and improved nutrition policy and corporate sustainability reporting. The primary outcome was the nutrient profile (measured using HSR) of company food and drink products at 24 months. Secondary outcomes were the nutrient content (energy, sodium, total sugar, and saturated fat) of company products, display of HSR labels on packaged products, company nutrition-related policies and commitments, and engagement with the intervention. Eighty-eight eligible intervention companies (9,235 products at baseline) were invited to participate, of whom 21 accepted and were enrolled in the REFORM programme (delivered between September 2021 and December 2022). Forty-four companies (3,551 products at baseline) were randomised to the control arm. At 24 months, the model-adjusted mean HSR of intervention company products was 2.58 compared to 2.68 for control companies, with no significant difference between groups (mean difference -0.10, 95% CI -0.40 to 0.21, p-value 0.53). A per protocol analysis of intervention companies who enrolled in the programme compared to control companies with no major protocol violation also found no significant difference (2.93 vs 2.64, mean difference 0.29, 95% CI -0.13 to 0.72, p-value 0.18). We found no significant differences between the intervention and control groups in any secondary outcome, except in total sugar (g/100g) where the sugar content of intervention company products was higher than that of control companies (12.32 vs 6.98, mean difference 5.34, 95% CI 1.73 to 8.96, p-value 0.004). The per-protocol analysis for sugar did not show a significant difference (10.47 vs 7.44, mean difference 3.03, 95% CI -0.48 to 6.53, p-value 0.09).In conclusion, a 12-month tailored nutrition support for food companies did not improve the nutrient profile of company products.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Unhealthy food environments are major drivers of obesity and diet-related diseases(1). Improving the healthiness of food environments requires a widespread organised response from governments, civil society, and industry(2). However, current actions often rely on voluntary participation by industry, such as opt-in nutrition labelling schemes, school/workplace food guidelines, and food reformulation programmes. The aim of the REFORM study is to determine the effects of the provision of tailored support to companies on their nutrition-related policies and practices, compared to food companies that are not offered the programme (the control). REFORM is a two-country, parallel cluster randomised controlled trial. 150 food companies were randomly assigned (2:1 ratio) to receive either a tailored support intervention programme or no intervention. Randomisation was stratified by country (Australia, New Zealand), industry sector (fast food, other packaged food/beverage companies), and company size. The primary outcome is the nutrient profile (measured using Health Star Rating [HSR]) of foods and drinks produced by participating companies at 24 months post-baseline. Secondary outcomes include company nutrition policies and commitments, the nutrient content (sodium, sugar, saturated fat) of products produced by participating companies, display of HSR labels, and engagement with the intervention. Eighty-three eligible intervention companies were invited to take part in the REFORM programme and 21 (25%) accepted and were enrolled. Over 100 meetings were held with company representatives between September 2021 and December 2022. Resources and tailored reports were developed for 6 touchpoints covering product composition and benchmarking, nutrition labelling, consumer insights, nutrition policies, and incentives for companies to act on nutrition. Detailed information on programme resources and preliminary 12-month findings will be presented at the conference. The REFORM programme will assess if provision of tailored support to companies on their nutrition-related policies and practices incentivises the food industry to improve their nutrition policies and actions.
The COVID-19 pandemic significantly disrupted schools and learning formats. Children with epilepsy are at-risk for generalized academic difficulties. We investigated the potential impact of COVID-19 on learning in those with epilepsy by comparing achievement on well-established academic measures among school-age children with epilepsy referred prior to the COVID-19 pandemic and those referred during the COVID-19 pandemic.
Participants and Methods:
This study included 466 children [52% male, predominately White (76%), MAge=10.75 years] enrolled in the Pediatric Epilepsy Research Consortium Epilepsy (PERC) Surgery database project who were referred for surgery and seen for neuropsychological testing. Patients were divided into two groups based on a proxy measure of pandemic timing completed by PERC research staff at each site (i.e., “were there any changes to typical in-person administration [of the evaluation] due to COVID?”). 31% of the sample (N = 144) were identified as having testing during the pandemic (i.e., “yes” response), while 69% were identified as having testing done pre-pandemic (i.e., “no” response). Of the 31% who answered yes, 99% of administration changes pertained to in-person testing or other changes, with 1% indicating remote testing. Academic achievement was assessed by performance measures (i.e., word reading, reading comprehension, spelling, math calculations, and math word problems) across several different tests. T-tests compared the two groups on each academic domain. Subsequent analyses examined potential differences in academic achievement among age cohorts that approximately matched grade level [i.e., grade school (ages 5-10), middle school (ages 11-14), and high school (ages 15-18)].
Results:
No significant differences were found between children who underwent an evaluation before the pandemic compared to those assessed during the pandemic based on age norms across academic achievement subtests (all p’s > .34). Similarly, there were no significant differences among age cohorts. The average performance for each age cohort generally fell in the low average range across academic skills. Performance inconsistently varied between age cohorts. The youngest cohort (ages 5-10) scored lower than the other cohorts for sight-word reading, whereas this cohort scored higher than the middle cohort (ages 11-14) for math word problems and reading comprehension. There were no significant differences between the two pandemic groups on demographic variables, intellectual functioning, or epilepsy variables (i.e., age of onset, number of seizure medications, seizure frequency).
Conclusions:
Academic functioning was generally equivalent between children with epilepsy who underwent academic testing as part of a pre-surgical evaluation prior to the pandemic compared to those who received testing during the pandemic. Additionally, academic functioning did not significantly differ between age cohorts. Children with epilepsy may have entered the pandemic with effective academic supports and/or were accustomed to school disruptions given their seizure history. Replication is needed as findings are based on a proxy measure of pandemic timing and the extent to which children experienced in-person, remote, and hybrid learning is unknown. Children tested a year into the pandemic, after receiving instruction through varying educational methods, may score differently than those tested earlier. Future research can address these gaps. Although it is encouraging that academic functioning was not disproportionately impacted during the pandemic in this sample, children with epilepsy are at-risk for generalized academic difficulties and continued monitoring of academic functioning is necessary.
The Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Database Project is a multisite collaborative that includes neuropsychological evaluations of children presenting for epilepsy surgery. There is some evidence for specific neuropsychological phenotypes within epilepsy (Hermann et al, 2016); however, this is less clear in pediatric patients. As a first step, we applied an empirically-based subtyping approach to determine if there were specific profiles using indices from the Wechsler scales [Verbal IQ (VIQ), Nonverbal IQ (NVIQ), Processing Speed Index (PSI), Working Memory Index (WMI)]. We hypothesized that there would be at least four profiles that are distinguished by slow processing speed and poor working memory as well as profiles with significant differences between verbal and nonverbal reasoning abilities.
Participants and Methods:
Our study included 372 children (M=12.1 years SD=4.1; 77.4% White; 48% male) who completed an age-appropriate Wechsler measure, enough to render at least two index scores. Epilepsy characteristics included 84.4% with focal epilepsy (evenly distributed between left and right focus) and 13.5% with generalized or mixed seizure types; mean age of onset = 6.7 years, SD = 4.5; seizure frequency ranged from daily to less than monthly; 53% had structural etiology; 71% had an abnormal MRI; and mean number of antiseizure medications was two. Latent profile analysis was used to identify discrete underlying cognitive profiles based on intellectual functioning. Demographic and epilepsy characteristics were compared among profiles.
Results:
Based on class enumeration procedures, a 3-cluster solution provided the best fit for the data, with profiles characterized by generally Average, Low Average, or Below Average functioning. 32.8% were in the Average profile with mean index scores ranging from 91.7-103.2; 47.6% were in the Low Average profile with mean index ranging from 80.7 to 84.5; and 19.6% were in the Below Average profile with mean index scores ranging from 55.0-63.1. Across all profiles, the lowest mean score was the PSI, followed by WMI. VIQ and NVIQ represented relatively higher scores for all three profiles. Mean discrepancy between indices within a profile was as large as 11.5 IQ points. No demographics or epilepsy characteristics were significantly different across cognitive phenotypes.
Conclusions:
Latent cognitive phenotypes in a pediatric presurgical cohort were differentiated by general level of functioning; however, across profiles, processing speed was consistently the lowest index followed by working memory. These findings across phenotypes suggest a common relative weakness which may result from a global effect of antiseizure medications and/or the widespread impact of seizures on neural networks even in a largely focal epilepsy cohort; similar to adult studies with temporal lobe epilepsy (Hermann et al, 2007). Future work will use latent profile analysis to examine phenotypes across other domains relevant to pediatric epilepsy including attention, naming, motor, and memory functioning. These findings are in line with collaborative efforts towards cognitive phenotyping which is the aim of our PERC Epilepsy Surgery Database Project that has already established one of the largest pediatric epilepsy surgery cohorts.
Children with epilepsy are at greater risk of lower academic achievement than their typically developing peers (Reilly and Neville, 2015). Demographic, social, and neuropsychological factors, such as executive functioning (EF), mediate this relation. While research emphasizes the importance of EF skills for academic achievement among typically developing children (e.g., Best et al., 2011; Spiegel et al., 2021) less is known among children with epilepsy (Ng et al., 2020). The purpose of this study is to examine the influence of EF skills on academic achievement in a nationwide sample of children with epilepsy.
Participants and Methods:
Participants included 427 children with epilepsy (52% male; MAge= 10.71), enrolled in the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Database who had been referred for surgery and underwent neuropsychological testing. Academic achievement was assessed by performance measures (word reading, reading comprehension, spelling, and calculation and word-based mathematics) and parent-rating measures (Adaptive Behavior Assessment System (ABAS) Functional Academics and Child Behavior Checklist (CBCL) School Performance). EF was assessed by verbal fluency measures, sequencing, and planning measures from the Delis Kaplan Executive Function System (DKEFS), NEPSY, and Tower of London test. Rating-based measures of EF included the 'Attention Problems’ subscale from the CBCL and 'Cognitive Regulation’ index from the Behavior Rating Inventory of Executive Function (BRIEF-2). Partial correlations assessed associations between EF predictors and academic achievement, controlling for fullscale IQ (FSIQ; A composite across intelligence tests). Significant predictors of each academic skill or rating were entered into a two-step regression that included FSIQ, demographics, and seizure variables (age of onset, current medications) in the first step with EF predictors in the second step.
Results:
Although zero-order correlations were significant between EF predictors and academic achievement (.29 < r’s < .63 for performance; -.63 < r’s < -.50 for rating measures), partial correlations controlling for FSIQ showed fewer significant relations. For performance-based EF, only letter fluency (DKEFS Letter Fluency) and cognitive flexibility (DKEFS Trails Condition 4) demonstrated significant associations with performance-based academic achievement (r’s > .29). Regression models for performance-based academic achievement indicated that letter fluency (ß = .22, p = .017) and CBCL attention problems (ß = -.21, p =.002) were significant predictors of sight-word reading. Only letter fluency (ß = .23, p =.006) was significant for math calculation. CBCL Attention Problems were a significant predictor of spelling performance (ß = -.21, p = .009) and reading comprehension (ß = -.18, p =.039). CBCL Attention Problems (ß = -.38, p <.001 for ABAS; ß = -.34, p =.002 for CBCL School) and BRIEF-2 Cognitive Regulation difficulties (ß = -.46, p < .001 for ABAS; ß = -.46, p =.013 for CBCL School) were significant predictors of parent-rated ABAS Functional Academics and CBCL School Performance.
Conclusions:
Among a national pediatric epilepsy dataset, performance-based and ratings-based measures of EF predicted performance academic achievement, whereas only ratings-based EF predicted parent-rated academic achievement, due at least in part to shared method variance. These findings suggest that interventions that increase cognitive regulation, reduce symptoms of attention dysfunction, and promote self-generative, flexible thinking, may promote academic achievement among children with epilepsy.
The current small study utilised prospective data collection of patterns of prenatal alcohol and tobacco exposure (PAE and PTE) to examine associations with structural brain outcomes in 6-year-olds and served as a pilot to determine the value of prospective data describing community-level patterns of PAE and PTE in a non-clinical sample of children. Participants from the Safe Passage Study in pregnancy were approached when their child was ∼6 years old and completed structural brain magnetic resonance imaging to examine with archived PAE and PTE data (n = 51 children–mother dyads). Linear regression was used to conduct whole-brain structural analyses, with false-discovery rate (FDR) correction, to examine: (a) main effects of PAE, PTE and their interaction; and (b) predictive potential of data that reflect patterns of PAE and PTE (e.g. quantity, frequency and timing (QFT)). Associations between PAE, PTE and their interaction with brain structural measures demonstrated unique profiles of cortical and subcortical alterations that were distinct between PAE only, PTE only and their interactive effects. Analyses examining associations between patterns of PAE and PTE (e.g. QFT) were able to significantly detect brain alterations (that survived FDR correction) in this small non-clinical sample of children. These findings support the hypothesis that considering QFT and co-exposures is important for identifying brain alterations following PAE and/or PTE in a small group of young children. Current results demonstrate that teratogenic outcomes on brain structure differ as a function PAE, PTE or their co-exposures, as well as the pattern (QFT) or exposure.
Terrestrial plant macrofossils from the sedimentary record of Lake Suigetsu, Japan, provide the only quasi-continuous direct atmospheric record of radiocarbon (14C) covering the last 50 ka cal BP (Bronk Ramsey et al. 2012). Since then, new high precision data have become available on U-Th dated speleothems from Hulu Cave China, covering the same time range (Cheng et al. 2018). In addition, an updated varve-based chronology has also been published for the 2006 core from Lake Suigetsu (SG06) based on extended microscopic analysis of the sediments and improved algorithms for interpolation (Schlolaut et al. 2018). Here we reanalyze the radiocarbon dataset from Suigetsu based on the new varve counting information and the constraints imposed by the speleothem data. This enables the new information on the calendar age scale of the Suigetsu dataset to be used in the construction of the consensus IntCal calibration curve. Comparison of the speleothem and plant macrofossil records provides insight into the mechanisms underlying the incorporation of carbon into different types of record and the relative strengths of different types of archive for calibration purposes.
Given the common view that pre-exercise nutrition/breakfast is important for performance, the present study investigated whether breakfast influences resistance exercise performance via a physiological or psychological effect. Twenty-two resistance-trained, breakfast-consuming men completed three experimental trials, consuming water-only (WAT), or semi-solid breakfasts containing 0 g/kg (PLA) or 1·5 g/kg (CHO) maltodextrin. PLA and CHO meals contained xanthan gum and low-energy flavouring (approximately 122 kJ), and subjects were told both ‘contained energy’. At 2 h post-meal, subjects completed four sets of back squat and bench press to failure at 90 % ten repetition maximum. Blood samples were taken pre-meal, 45 min and 105 min post-meal to measure serum/plasma glucose, insulin, ghrelin, glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations. Subjective hunger/fullness was also measured. Total back squat repetitions were greater in CHO (44 (sd 10) repetitions) and PLA (43 (sd 10) repetitions) than WAT (38 (sd 10) repetitions; P < 0·001). Total bench press repetitions were similar between trials (WAT 37 (sd 7) repetitions; CHO 39 (sd 7) repetitions; PLA 38 (sd 7) repetitions; P = 0·130). Performance was similar between CHO and PLA trials. Hunger was suppressed and fullness increased similarly in PLA and CHO, relative to WAT (P < 0·001). During CHO, plasma glucose was elevated at 45 min (P < 0·05), whilst serum insulin was elevated (P < 0·05) and plasma ghrelin suppressed at 45 and 105 min (P < 0·05). These results suggest that breakfast/pre-exercise nutrition enhances resistance exercise performance via a psychological effect, although a potential mediating role of hunger cannot be discounted.
Clinical Enterobacteriacae isolates with a colistin minimum inhibitory concentration (MIC) ≥4 mg/L from a United States hospital were screened for the mcr-1 gene using real-time polymerase chain reaction (RT-PCR) and confirmed by whole-genome sequencing. Four colistin-resistant Escherichia coli isolates contained mcr-1. Two isolates belonged to the same sequence type (ST-632). All subjects had prior international travel and antimicrobial exposure.
A cluster of Salmonella Paratyphi B variant L(+) tartrate(+) infections with indistinguishable pulsed-field gel electrophoresis patterns was detected in October 2015. Interviews initially identified nut butters, kale, kombucha, chia seeds and nutrition bars as common exposures. Epidemiologic, environmental and traceback investigations were conducted. Thirteen ill people infected with the outbreak strain were identified in 10 states with illness onset during 18 July–22 November 2015. Eight of 10 (80%) ill people reported eating Brand A raw sprouted nut butters. Brand A conducted a voluntary recall. Raw sprouted nut butters are a novel outbreak vehicle, though contaminated raw nuts, nut butters and sprouted seeds have all caused outbreaks previously. Firms producing raw sprouted products, including nut butters, should consider a kill step to reduce the risk of contamination. People at greater risk for foodborne illness may wish to consider avoiding raw products containing raw sprouted ingredients.
Magnesium hydroxyfluoride, Mg(OH)F, has been synthesized by a subcritical hydrothermal route from a 1:1 molar mixture of brucite, Mg(OH)2, and sellaite, MgF2 with a rutile type structure, in excess water. Using a combination of synchrotron X-ray and time-of-flightneutron powder diffraction, the structure of Mg(OH)F has been solved in the diaspore space group Pnma with a = 10.116(3), b = 4.6888(10) and c = 3.0794(7) Å at ambient conditions. The most intense diffraction lines are [dobs (hkl)Iobs]: 2.291 (211) 10, 4.253 (101) 7, 1.747 (212) 7, 2.229 (401) 6 and 1.480 (610) (4) Å, with the largest d-spacing at 5.058 Å. Sharp infrared stretching bands are located at 3679 and 3645 cm–1, with a broader band at 3535 cm–1.The topology of the structure is intermediate between that of the OH and F endmembers, being derived through notional shearing nearly normal to the sheets of octahedra of the CdI2/Mg(OH)2-type structure. Further similar shearing at an interval 1/2a would lead toa Cd(OH)F-type structure, which is also related to the rutile structure type. The observations and model presented here indicate a close correlation between the structural properties of the endmembers and Mg(OH)F.
The effect of transportation and lairage on the faecal shedding and post-slaughter contamination of carcasses with Escherichia coli O157 and O26 in young calves (4–7-day-old) was assessed in a cohort study at a regional calf-processing plant in the North Island of New Zealand, following 60 calves as cohorts from six dairy farms to slaughter. Multiple samples from each animal at pre-slaughter (recto-anal mucosal swab) and carcass at post-slaughter (sponge swab) were collected and screened using real-time PCR and culture isolation methods for the presence of E. coli O157 and O26 (Shiga toxin-producing E. coli (STEC) and non-STEC). Genotype analysis of E. coli O157 and O26 isolates provided little evidence of faecal–oral transmission of infection between calves during transportation and lairage. Increased cross-contamination of hides and carcasses with E. coli O157 and O26 between co-transported calves was confirmed at pre-hide removal and post-evisceration stages but not at pre-boning (at the end of dressing prior to chilling), indicating that good hygiene practices and application of an approved intervention effectively controlled carcass contamination. This study was the first of its kind to assess the impact of transportation and lairage on the faecal carriage and post-harvest contamination of carcasses with E. coli O157 and O26 in very young calves.
Dengue is the fastest spreading mosquito-transmitted disease in the world. In China, Guangzhou City is believed to be the most important epicenter of dengue outbreaks although the transmission patterns are still poorly understood. We developed an autoregressive integrated moving average model incorporating external regressors to examine the association between the monthly number of locally acquired dengue infections and imported cases, mosquito densities, temperature and precipitation in Guangzhou. In multivariate analysis, imported cases and minimum temperature (both at lag 0) were both associated with the number of locally acquired infections (P < 0.05). This multivariate model performed best, featuring the lowest fitting root mean squared error (RMSE) (0.7520), AIC (393.7854) and test RMSE (0.6445), as well as the best effect in model validation for testing outbreak with a sensitivity of 1.0000, a specificity of 0.7368 and a consistency rate of 0.7917. Our findings suggest that imported cases and minimum temperature are two key determinants of dengue local transmission in Guangzhou. The modelling method can be used to predict dengue transmission in non-endemic countries and to inform dengue prevention and control strategies.
Background: High comorbidity rates among emotional disorders have led researchers to examine transdiagnostic factors that may contribute to shared psychopathology. Bifactor models provide a unique method for examining transdiagnostic variables by modelling the common and unique factors within measures. Previous findings suggest that the bifactor model of the Depression Anxiety and Stress Scale (DASS) may provide a method for examining transdiagnostic factors within emotional disorders. Aims: This study aimed to replicate the bifactor model of the DASS, a multidimensional measure of psychological distress, within a US adult sample and provide initial estimates of the reliability of the general and domain-specific factors. Furthermore, this study hypothesized that Worry, a theorized transdiagnostic variable, would show stronger relations to general emotional distress than domain-specific subscales. Method: Confirmatory factor analysis was used to evaluate the bifactor model structure of the DASS in 456 US adult participants (279 females and 177 males, mean age 35.9 years) recruited online. Results: The DASS bifactor model fitted well (CFI = 0.98; RMSEA = 0.05). The General Emotional Distress factor accounted for most of the reliable variance in item scores. Domain-specific subscales accounted for modest portions of reliable variance in items after accounting for the general scale. Finally, structural equation modelling indicated that Worry was strongly predicted by the General Emotional Distress factor. Conclusions: The DASS bifactor model is generalizable to a US community sample and General Emotional Distress, but not domain-specific factors, strongly predict the transdiagnostic variable Worry.
An internationally approved and globally used classification scheme for the diagnosis of CHD has long been sought. The International Paediatric and Congenital Cardiac Code (IPCCC), which was produced and has been maintained by the International Society for Nomenclature of Paediatric and Congenital Heart Disease (the International Nomenclature Society), is used widely, but has spawned many “short list” versions that differ in content depending on the user. Thus, efforts to have a uniform identification of patients with CHD using a single up-to-date and coordinated nomenclature system continue to be thwarted, even if a common nomenclature has been used as a basis for composing various “short lists”. In an attempt to solve this problem, the International Nomenclature Society has linked its efforts with those of the World Health Organization to obtain a globally accepted nomenclature tree for CHD within the 11th iteration of the International Classification of Diseases (ICD-11). The International Nomenclature Society has submitted a hierarchical nomenclature tree for CHD to the World Health Organization that is expected to serve increasingly as the “short list” for all communities interested in coding for congenital cardiology. This article reviews the history of the International Classification of Diseases and of the IPCCC, and outlines the process used in developing the ICD-11 congenital cardiac disease diagnostic list and the definitions for each term on the list. An overview of the content of the congenital heart anomaly section of the Foundation Component of ICD-11, published herein in its entirety, is also included. Future plans for the International Nomenclature Society include linking again with the World Health Organization to tackle procedural nomenclature as it relates to cardiac malformations. By doing so, the Society will continue its role in standardising nomenclature for CHD across the globe, thereby promoting research and better outcomes for fetuses, children, and adults with congenital heart anomalies.
On 27 April 2015, Washington health authorities identified Escherichia coli O157:H7 infections associated with dairy education school field trips held in a barn 20–24 April. Investigation objectives were to determine the magnitude of the outbreak, identify the source of infection, prevent secondary illness transmission and develop recommendations to prevent future outbreaks. Case-finding, hypothesis generating interviews, environmental site visits and a case–control study were conducted. Parents and children were interviewed regarding event activities. Odds ratios (OR) and 95% confidence intervals (CI) were computed. Environmental testing was conducted in the barn; isolates were compared to patient isolates using pulsed-field gel electrophoresis (PFGE). Sixty people were ill, 11 (18%) were hospitalised and six (10%) developed haemolytic uremic syndrome. Ill people ranged in age from <1 year to 47 years (median: 7), and 20 (33%) were female. Twenty-seven case-patients and 88 controls were enrolled in the case–control study. Among first-grade students, handwashing (i.e. soap and water, or hand sanitiser) before lunch was protective (adjusted OR 0.13; 95% CI 0.02–0.88, P = 0.04). Barn samples yielded E. coli O157:H7 with PFGE patterns indistinguishable from patient isolates. This investigation provided epidemiological, laboratory and environmental evidence for a large outbreak of E. coli O157:H7 infections from exposure to a contaminated barn. The investigation highlights the often overlooked risk of infection through exposure to animal environments as well as the importance of handwashing for disease prevention. Increased education and encouragement of infection prevention measures, such as handwashing, can prevent illness.
The prevalence and spatial distribution of Escherichia coli serogroups O26, O103, O111 and O145 in calves <7 days old in New Zealand and their relationship with serum IgG, weight and sex was determined by collecting recto-anal mucosal swabs (RAMS) (n = 299) and blood samples (n = 299) from two slaughter plants in the North Island. Real-time PCR of RAMS enrichment cultures revealed that 134/299 samples were positive for O26, 68/299 for O103 and 47/299 for O145, but none were positive for O111. Processing of positive enrichment cultures resulted in 49 O26, four O103 and five O145 isolates. Using multiplex PCR 25/49 (51%) O26 isolates were positive for stx1, eae, ehxA, 17/49 (34·7%) for eae, ehxA and 7/49 (14·2%) for eae only. All O103 and O145 isolates were positive for eae, ehxA only. O26 isolates were grouped into four clusters (>70% similarity) using pulsed field gel electrophoresis. Mapping of the farms showed the presence of farms positive for O26, O103 and O145 in three important dairy producing regions of the North Island. Calves positive for O103 were more likely to be positive for O26 and vice versa (P = 0·04). Similarly, calves positive for O145 were more likely to be positive for O103 and vice versa (P = 0·03). This study demonstrates that non-O157 E. coli serogroups of public health and economic importance containing clinically relevant virulence factors are present in calves in the North Island of New Zealand.