We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multiple osteoarticular tuberculosis (MOT) represents an uncommon yet severe form of tuberculosis, characterized by a lack of systematic analysis and comprehension. Our objective was to delineate MOT’s epidemiological characteristics and establish a scientific foundation for prevention and treatment. We conducted searches across eight databases to identify relevant articles. Pearson’s chi-square test (Fisher’s exact test) and Bonferroni method were employed to assess osteoarticular involvement among patients of varying age and gender (α = 0.05). The study comprised 98 articles, encompassing 151 cases from 22 countries, with China and India collectively contributing 67.55% of cases. MOT predominantly affected individuals aged 0–30 years (58.94%). Pulmonary tuberculosis was evident in 16.55% of cases, with spinal involvement prevalent (57.62%). Significant differences were noted in trunk, spine, thoracic, and lumbar vertebrae involvement, as well as type I lesions across age groups, increasing with age. Moreover, significant differences were observed in upper limb bone involvement and type II lesions across age groups, decreasing with age. Gender differences were not significant. MOT primarily manifests in China and India, predominantly among younger individuals, indicating age-related variations in osteoarticular involvement. Enhanced clinical awareness is crucial for accurate MOT diagnosis, mitigating missed diagnoses and misdiagnoses.
We consider the problem of parameter estimation for the superposition of square-root diffusions. We first derive the explicit formulas for the moments and auto-covariances based on which we develop our moment estimators. We then establish a central limit theorem for the estimators with the explicit formulas for the asymptotic covariance matrix. Finally, we conduct numerical experiments to validate our method.
To investigate the relationship between father involvement in parenting and mental health problems among children and adolescents in rural China. The Rural Children’s Mental Health dataset includes mental health information from 2,489 children and adolescents aged 5–16 in seven provinces in China. The relationship between father involvement in children and adolescents depression risk and anxiety was analyzed by Spearman’s correlation analysis, logistic regression analysis, and restricted cubic spline. Father involvement was significantly and negatively associated with depression scores (r = −0.38, P < 0.001) and anxiety scores (r = −0.18, P < 0.001) in rural Chinese children and adolescents. Both multivariate models indicate that the highest level of father involvement has a protective effect on the risk of depression among children and adolescents (OR = 0.268 and 0.303, 95% CI: 0.149~0.483 and 0.144~0.636), while the association with anxiety risk is only significant in the multivariate model 1 (OR = 0.570, 95% CI: 0.363~0.896). Father involvement is a protective factor for the risk of depression among children and adolescents in rural China. The level of father involvement should be increased, and active participation should be encouraged to reduce the risk of depression in their children and to further promote the mental health of children and adolescents in China.
Non-suicidal self-injury (NSSI) is prevalent in major depressive disorder (MDD) during adolescence, but the underlying neural mechanisms are unclear. This study aimed to investigate microstructural abnormalities in the cingulum bundle associated with NSSI and its clinical characteristics.
Methods
130 individuals completed the study, including 35 healthy controls, 47 MDD patients with NSSI, and 48 MDD patients without NSSI. We used tract-based spatial statistics (TBSS) with a region of interest (ROI) analysis to compare the fractional anisotropy (FA) of the cingulum bundle across the three groups. receiver-operating characteristics (ROC) analysis was employed to evaluate the ability of the difficulties with emotion regulation (DERS) score and mean FA of the cingulum to differentiate between the groups.
Results
MDD patients with NSSI showed reduced cingulum integrity in the left dorsal cingulum compared to MDD patients without NSSI and healthy controls. The severity of NSSI was negatively associated with cingulum integrity (r = −0.344, p = 0.005). Combining cingulum integrity and DERS scores allowed for successful differentiation between MDD patients with and without NSSI, achieving a sensitivity of 70% and specificity of 83%.
Conclusions
Our study highlights the role of the cingulum bundle in the development of NSSI in adolescents with MDD. The findings support a frontolimbic theory of emotion regulation and suggest that cingulum integrity and DERS scores may serve as potential early diagnostic tools for identifying MDD patients with NSSI.
OBJECTIVES/GOALS: Leigh Syndrome, French Canadian-Type (LSFC) is a neurometabolic disorder caused by mutation of mitochondria-related gene, LRPPRC. White matter lesions and demyelination in central nervous system are common in LSFC. LRPPRC is enriched in myelinating glial cells, yet its role is not known. Our goal is to elucidate its mechanistic role in myelination. METHODS/STUDY POPULATION: We crossed C57BL/6N mice bearing a LRPPRC-loxP allele with mice bearing a Plp-CreERT2 allele. Mice with the Plp-CreERT2 allele expresses a tamoxifen-inducible Cre under the control of the Plp promoter, which drives expression in oligodendrocytes. Using these strains, we can target the deletion of LRPPRC, via tamoxifen injection, in both newly formed myelin and mature myelin. Plp-CreERT2; LRPPRCL/L (LRPPRC-KO) or control littermate mice will be injected for LRPPRC deletion at developmental and maturation stages of myelin. Immunofluorescence and electron microscopy of isolated brain tissues will be used for myelin integrity analysis. Cognitive functions of the mice will be measured via behavioral tests. Lastly, we will submit tissues for lipidomic analyses to observe any lipid metabolite variation. RESULTS/ANTICIPATED RESULTS: Behavioral and motor defects would be expected in LRPPRC-KO mice performing in cognitive function tasks across myelin maturation stages. Electron microscopy-based structure analysis of optic nerve, corpus callosum, and spinal cord should reveal thin or loss of myelin on the axons of LRPPRC-KO compared to control. Immunofluorescence staining of major myelin structural proteins, including myelin proteolipid protein (PLP), myelin basic protein (MBP), and myelin-associated glycoprotein (MAG) would be expected have lower levels in LRPPRC deficient tissues. Since myelin is a lipid-rich species, we would also expect lipid concentrations to be affected. LRPPRC-KO lipidomic analyses of myelin-related lipids should depict lower levels in comparison to control, which would imply dysfunctional lipid metabolism. DISCUSSION/SIGNIFICANCE: There are limited studies in ameliorating neural deficits caused by LS and LSFC. Successful completion of this project would help elucidate the functions of LRPPRC in myelination and lipid metabolism and potentially provide insights for developing novel therapeutic strategies for alleviating the demyelination and neural deficits in LSFC.
The transport phenomena of dust particles have been widely observed in fusion plasmas. In this article, we report the observations of dust fragmentations in the Experimental Advanced Superconducting Tokamak (EAST). A dust particle splits into two daughter particles and their motions are recorded before and after the breakup with a fast video camera. The trajectories of the daughter particles in the experiment are consistent with equation-of-motion simulations. The stability of a rotating charged particle in the plasma is briefly discussed.
Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs) in toroidal geometries such as tokamaks was discovered through a full orbit simulation approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically investigated that a new expression for the magnetic moment, including the second-order corrections, could essentially reproduce the so-called collisionless pitch-angle scattering process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron radiation, extensive numerical verification of the validity of the high-order guiding-centre theory is given for simulations involving REs by incorporating such an expression for the magnetic moment into our particle tracing code. A high-order guiding-centre simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation plays an essential role in the life cycle of REs. The energy of REs first increases and then becomes saturated until the electric field acceleration is balanced by the radiation dissipation. Unfortunately, the process cannot be simulated accurately with the standard guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found that the HGSA can effectively produce the fundamental process of REs. Since the time scale of the energy saturation of REs is close to seconds, the computational cost becomes significant. In order to save costs, it is necessary to estimate the time of energy saturation. An analytical estimate is derived for the time it takes for synchrotron drag to balance an accelerating electric field and the provided formula has been numerically verified. Test calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
T long-term effects of cognitive therapy and behavior therapy (CTBT) for menopausal symptoms are unknown, and whether the effects are different between natural menopause and treatment-induced menopause are currently unclear. Therefore, we sought to conduct an accurate estimate of the efficacy of CTBT for menopausal symptoms.
Methods
We conducted searches of Cochrane Library, EMBASE, PsycINFO, PubMed, and Web of Science databases for studies from 1 January 1977 to 1 November 2021. Randomized controlled trials (RCTs) comparing intervention groups to control groups for menopausal symptoms were included. Hedge's g was used as the standardized between-group effect size with a random-effects model.
Results
We included 14 RCTs comprising 1618 patients with a mean sample size of 116. CTBT significantly outperformed control groups in terms of reducing hot flushes [g = 0.39, 95% confidence interval (CI) 0.23–0.55, I2 = 45], night sweats, depression (g = 0.50, 95% CI 0.34–0.66, I2 = 51), anxiety (g = 0.38, 95% CI 0.23–0.54, I2 = 49), fatigue, and quality of life. Egger's test indicated no publication bias.
Conclusions
CTBT is an effective psychological treatment for menopausal symptoms, with predominantly small to moderate effects. The efficacy is sustained long-term, although it declines somewhat over time. The efficacy was stronger for natural menopause symptoms, such as vasomotor symptoms, than for treatment-induced menopause symptoms. These findings provide support for treatment guidelines recommending CTBT as a treatment option for menopausal symptoms.
Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis.
Methods
Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse.
Results
Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical−striatal−thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse.
Conclusion
MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
With the characteristics of full autonomy and no accumulated errors, polarisation navigation shows tremendous prospects in underwater scenarios. In this paper, inspired by the polarisation vision of aquatic organisms, a novel point-source polarisation sensor with high spectral adaptability (400 nm–760 nm) is designed for underwater orientation. To enhance the environmental applicability of the underwater polarisation sensor, a novel sensor model based on the underwater light intensity attenuation coefficient and optical coupling coefficient is established. In addition, concerned with the influence of light intensity uncertainty on sensor performance underwater, an antagonistic polarisation algorithm is adopted for the first time, to improve the accuracy of angle of polarisation and degree of polarisation in the low signal-to-noise ratio environment underwater. Finally, indoor and outdoor experiments are carried out to evaluate the performance of the designed polarisation sensor. The results show that the designed point-source polarisation sensor can acquire polarised light and be used for heading determination underwater.
COVID-19 is causing a significant burden on medical and healthcare resources globally due to high numbers of hospitalisations and deaths recorded as the pandemic continues. This research aims to assess the effects of climate factors (i.e., daily average temperature and average relative humidity) on effective reproductive number of COVID-19 outbreak in Wuhan, China during the early stage of the outbreak. Our research showed that effective reproductive number of COVID-19 will increase by 7.6% (95% Confidence Interval: 5.4% ~ 9.8%) per 1°C drop in mean temperature at prior moving average of 0–8 days lag in Wuhan, China. Our results indicate temperature was negatively associated with COVID-19 transmissibility during early stages of the outbreak in Wuhan, suggesting temperature is likely to effect COVID-19 transmission. These results suggest increased precautions should be taken in the colder seasons to reduce COVID-19 transmission in the future, based on past success in controlling the pandemic in Wuhan, China.
Digital medication health service (DMHS) platforms are increasingly used by pharmaceutical companies to provide direct medication health services through digital methods like apps, hotlines, and web services, etcetera. However, the implications of such platforms in supporting health technology assessment (HTA) are rarely discussed in the literature. This presentation sets out the opportunities for using the DMHS platforms of pharmaceutical companies as real-world data sources for HTA.
Methods
A mixed-method qualitative study combining literature review and case study was conducted. Relevant literature was identified by searching the Web of Science and PubMed databases. A case study on current DMHS platforms in China was carried out using an inductive approach to identify the key elements emerging from these platforms.
Results
DMHS platforms of pharmaceutical companies can identify multiple attributes of medication information needs regarding medical products, including effectiveness, safety, and economic factors. The platforms can respond to different stakeholders, including patients and their carers, doctors, nurses, pharmacists, etcetera. As one kind of interactive process, DMHS platforms can provide further services, including patient education, consultation, and evaluation, follow-up visits, chronic disease management, promotion of the rational use of drugs, therapeutic drug monitoring, and adverse drug reaction surveillance and reporting.
Conclusions
The DMHS platforms of pharmaceutical companies provide a unique and valuable real-world data source for HTA. These types of self-reported outcomes have not gained enough attention in HTA. Collective efforts by HTA agencies and pharmaceutical companies are needed to set strategies for integrating DMHS platforms into HTA.
In the laser plasma interaction of quantum electrodynamics (QED)-dominated regime, γ-rays are generated due to synchrotron radiation from high-energy electrons traveling in a strong background electromagnetic field. With the aid of 2D particle-in-cell code including QED physics, we investigate the preplasma effect on the γ-ray generation during the interaction between an ultraintense laser pulse and solid targets. We found that with the increasing preplasma scale length, the γ-ray emission is enhanced significantly and finally reaches a steady state. Meanwhile, the γ-ray beam becomes collimated. This shows that, in some cases, the preplasmas will be piled up acting as a plasma mirror in the underdense preplasma region, where the γ-rays are produced by the collision between the forward electrons and the reflected laser fields from the piled plasma. The piled plasma plays the same role as the usual reflection mirror made from a solid target. Thus, a single solid target with proper scale length preplasma can serve as a manufactural and robust γ-ray source.
Fullerene dimers have attracted extensive attention due to their unique structures and fascinating properties. Here, fullerene dimer derivatives with four to six carbon atoms in the esters are designed and synthesized. The property differences that caused by the carbon number in the esters of the fullerene dimers are investigated by performing their electrochemical, optical, and photoelectric measurements. As the carbon atom numbers in the esters increase from four to five and six, the absorption intensities increase to 1.6- and 4.4-folds. The intensities of the fluorescence spectra increase to 1.8- and 5.2-folds. Their photocurrent increases to 2- and 7-folds under the irradiation of a 405-nm laser. The LUMO energy levels move downward slightly from −3.89 to −3.90 and −3.92 eV, respectively. Our results indicate that as the carbon number increases, the carbon chain lengths in the ester structures increase, very slight effects produced on the energy levels of the fullerene dimers, but strongly contribute to their chemical activities and thus the photoelectronic efficiencies.
Aggressive behaviour is common in animals and typically has lifetime consequences. As younger males have higher residual reproductive value than older males and lose more from injuries than older males do, the propensity for fighting tends to increase with age in many empirical reports and species. However, fighting patterns in those empirical reports cannot confirm the hypothesis that individuals cannot readily inflict injuries on their opponents. To address this shortcoming, a parasitoid wasp species, Anastatus disparis (Hymenoptera: Eupelmidae), was used as an experimental model to explore the characteristics of aggression from a life-history perspective; this wasp exhibits extreme fighting, resulting in contestants experiencing injury and death. Results showed that the energetic costs of fighting to injury significantly shortened life and caused the loss of most mating ability. Inconsistent with general predictions, the frequency and intensity of fighting in A. disparis significantly decreased with male age. Further study results showed significantly more young males were received by and successfully mated with virgin females, and most genes related to energy metabolism were downregulated in aged males. Our study provided supporting evidence that young A. disparis males show more aggression likely because of their resource holding potential and sexual attractiveness decline with age.
This paper studies the parameter estimation for Ornstein–Uhlenbeck stochastic volatility models driven by Lévy processes. We propose computationally efficient estimators based on the method of moments that are robust to model misspecification. We develop an analytical framework that enables closed-form representation of model parameters in terms of the moments and autocorrelations of observed underlying processes. Under moderate assumptions, which are typically much weaker than those for likelihood methods, we prove large-sample behaviors for our proposed estimators, including strong consistency and asymptotic normality. Our estimators obtain the canonical square-root convergence rate and are shown through numerical experiments to outperform likelihood-based methods.
Information about seed dormancy cycling and germination in relation to temperature and moisture conditions in the natural environment is important for the conservation and restoration of rare species, including Begonia guishanensis and Paraisometrum mileense, two sympatric perennial limestone (karst) species. Dry afterripening (DAR) and wet and dry (WD) cycles at 15/5 and 25/15°C as well as moist chilling (MC) at 15/5°C were used to mimic the natural environment at different times of the year. A field experiment was conducted to monitor seasonal changes in germination responses of the seeds. About 40–65% of B. guishanensis and 5% of P. mileense seeds were dormant at maturity. DAR at 25/15 and 15/5°C as well as MC and WD cycles at 15/5°C alleviated dormancy for B. guishanensis but not P. mileense, and WD cycles at 25/15°C induced a deeper conditional dormancy for both species. Seeds of B. guishanensis exhibited dormancy cycling in the field, with increased dormancy under natural WD cycles at relatively high temperatures during the transition from the dry to the wet season in April to May and decreased dormancy during the wet season from June to October. KNO3 mitigated the dormancy-inducing effect of both artificial and natural WD cycles at relatively high temperatures for B. guishanensis. The field experiment indicated that seeds of B. guishanensis may be able to form a persistent soil seed bank, while almost all seeds of P. mileense germinate at the beginning of the wet season in the field.
This paper presents geochemical and grain-size records since the early Holocene in core ECS0702 with a fine chronology frame obtained from the Yangtze River subaqueous delta front. Since ~9500 cal yr BP, the proxy records of chemical weathering from the Yangtze River basin generally exhibit a Holocene optimum in the early Holocene, a weak East Asian summer monsoon (EASM) period during the middle Holocene, and a relatively strong EASM period in the late Holocene. The ~8.2 and ~4.4 cal ka BP cooling events are recorded in core ECS0702. The flooding events reconstructed by the grain-size parameters since the early Holocene suggest that the floods mainly occurred during strong EASM periods and the Yangtze River mouth sandbar caused by the floods mainly formed in the early and late Holocene. The Yangtze River-mouth sandbars since the early Holocene shifted from north to south, affected by tidal currents and the Coriolis force, and more importantly, controlled by the EASM. Our results are of great significance for enriching both the record of Holocene climate change in the Yangtze River basin and knowledge about the formation and evolution progress of the deltas located in monsoon regions.
Maternal supraphysiological estradiol (E2) environment during pregnancy leads to adverse perinatal outcomes. However, the influence of oocyte exposure to high E2 levels on perinatal outcomes remains unknown. Thus, a retrospective cohort study was conducted to explore the effect of high E2 level induced by controlled ovarian stimulation (COH) on further outcomes after frozen embryo transfer (FET). The study included all FET cycles (n = 10,581) between 2014 and 2017. All cycles were categorized into three groups according to the E2 level on the day of the human Chorionic Gonadotropin trigger. Odds ratios (ORs) and their confidence intervals (CIs) were calculated to evaluate the association between E2 level during COH and pregnancy outcomes and subsequent neonatal outcomes. From our findings, higher E2 level was associated with lower percentage of chemical pregnancy, clinical pregnancy, ongoing pregnancy, and live birth as well as increased frequency of early miscarriage. Preterm births were more common among singletons in women with higher E2 level during COH (aOR1 = 1.93, 95% CI: 1.22–3.06; aOR2 = 2.05, 95% CI: 1.33–3.06). Incidence of small for gestational age (SGA) was more common in both singletons (aOR1 = 2.01, 95% CI: 1.30–3.11; aOR2 = 2.51, 95% CI: 1.69–3.74) and multiples (aOR1 = 1.58, 95% CI: 1.03–2.45; aOR2 = 1.99, 95% CI: 1.05–3.84) among women with relatively higher E2 level. No association was found between high E2 level during COH and the percentage of macrosomia or large for gestational age. In summary, oocyte exposure to high E2 level during COH should be brought to our attention, since the pregnancy rate decreasing and the risk of preterm birth and SGA increasing following FET.