We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
There is a significant mortality gap between the general population and people with psychosis. Completion rates of regular physical health assessments for cardiovascular risk in this group are suboptimal. Point-of-care testing (POCT) for diabetes and hyperlipidaemia – providing an immediate result from a finger-prick – could improve these rates.
Aims
To evaluate the impact on patient–clinician encounters and on physical health check completion rates of implementing POCT for cardiovascular risk markers in early intervention in psychosis (EIP) services in South East England.
Method
A mixed-methods, real-world evaluation study was performed, with 40 POCT machines introduced across EIP teams in all eight mental health trusts in South East England from March to May 2021. Clinician training and support was provided. Numbers of completed physical health checks, HbA1c and lipid panel blood tests completed 6 and 12 months before and 6 months after introduction of POCT were collected for individual patients. Data were compared with those from the South West region, which acted as a control. Clinician questionnaires were administered at 2 and 8 months, capturing device usability and impacts on patient interactions.
Results
Post-POCT, South East England saw significant increases in HbA1c testing (odds ratio 2.02, 95% CI 1.17–3.49), lipid testing (odds ratio 2.38, 95% CI 1.43–3.97) and total completed health checks (odds ratio 3.61, 95% CI 1.94–7.94). These increases were not seen in the South West. Questionnaires revealed improved patient engagement, clinician empowerment and patients’ preference for POCT over traditional blood tests.
Conclusions
POCT is associated with improvements in the completion and quality of physical health checks, and thus could be a tool to enhance holistic care for individuals with psychosis.
NASA’s all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6 000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterisation of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilisation of the statistical validation tool known as TRICERATOPS, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.61$^{+0.09} _{-0.10}$ R$_\oplus$), TOI-771b (1.42$^{+0.11} _{-0.09}$ R$_\oplus$), TOI-871b (1.66$^{+0.11} _{-0.11}$ R$_\oplus$), TOI-1467b (1.83$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-1739b (1.69$^{+0.10} _{-0.08}$ R$_\oplus$), TOI-2068b (1.82$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-4559b (1.42$^{+0.13} _{-0.11}$ R$_\oplus$), and TOI-5799b (1.62$^{+0.19} _{-0.13}$ R$_\oplus$). Among all these planets, six of them fall within the region known as ‘keystone planets’, which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterised them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterisation. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.
Aviation passenger screening has been used worldwide to mitigate the translocation risk of SARS-CoV-2. We present a model that evaluates factors in screening strategies used in air travel and assess their relative sensitivity and importance in identifying infectious passengers. We use adapted Monte Carlo simulations to produce hypothetical disease timelines for the Omicron variant of SARS-CoV-2 for travelling passengers. Screening strategy factors assessed include having one or two RT-PCR and/or antigen tests prior to departure and/or post-arrival, and quarantine length and compliance upon arrival. One or more post-arrival tests and high quarantine compliance were the most important factors in reducing pathogen translocation. Screening that combines quarantine and post-arrival testing can shorten the length of quarantine for travelers, and variability and mean testing sensitivity in post-arrival RT-PCR and antigen tests decrease and increase with the greater time between the first and second post-arrival test, respectively. This study provides insight into the role various screening strategy factors have in preventing the translocation of infectious diseases and a flexible framework adaptable to other existing or emerging diseases. Such findings may help in public health policy and decision-making in present and future evidence-based practices for passenger screening and pandemic preparedness.
Individuals with Parkinson's disease (PD) have varying trajectories of cognitive decline. One reason for this heterogeneity may be "cognitive reserve": where higher education/IQ/current mental engagement compensates for increasing brain burden (Stern et al., 2020). With few exceptions, most studies examining cognitive reserve in PD fail to include brain metrics. This study's goal was to examine whether cognitive reserve moderated the relationship between neuroimaging indices of brain burden (diffusion free water fraction and T2-weighted white matter changes) and two commonly impaired domains in PD: executive function and memory. We hypothesized cognitive reserve would mitigate the relationship between higher brain burden and worse cognitive performance.
Participants and Methods:
Participants included 108 individuals with PD without dementia (age mean=67.9±6.3, education mean=16.6±2.5) who were prospectively recruited for two NIH-funded projects at the University of Florida. All received neuropsychological measures of executive function (Trails B, Stroop, Letter Fluency) and memory (delayed recall: Hopkin's Verbal Learning Test-Revised, WMS-III Logical Memory). Domain specific z-score composites were created using data from age/education matched non-PD peer controls (N=62). For the Cognitive Reserve (CR) proxy, a z-score composite included years of education, WASI-II Vocabulary, and Wechsler Test of Adult Reading. At the time of testing, participants completed multiple MRI scans (T1-weighted, diffusion, Fluid Attenuated Inversion Recovery) from which the following were extracted: 1) whole-brain free water within the white matter (a measure of microstructural integrity and neuroinflammation), 2) white matter hyperintensities/white matter total volume (WMH/WMV), and bilaterally-averaged edge weights of white matter connectivity between 3) dorsolateral prefrontal cortex and caudate and 4) entorhinal cortex and hippocampi. Separate linear regressions for each brain metric used executive function and memory composites as dependent variables; predictors were age, CR proxy, respective brain metric, and a residual centered interaction term (brain metric*CR proxy). Identical models were run in dichotomized short and long disease duration groups (median split=6 years).
Results:
In all models, a lower CR proxy significantly predicted worse executive function (WMH/WMV: beta=0.49, free water: beta=0.54, frontal edge weight: beta=0.49, p's<0.001) and memory (WMH/WMV: beta=0.42, free water: beta=0.35, temporal edge weight: beta=0.39, p's <0.01). For neuroimaging metrics, higher free water significantly predicted worse executive function (beta=-0.39, p=0.002) but not memory. No other brain metrics were significant predictors of either domain. Accounting for PD duration, higher free water predicted worse executive function for those with both short (beta=-0.49, p=0.04) and long disease duration (beta=-0.48, p=0.02). Specifically in those with long disease duration, higher free water (beta=-0.57 p=0.02) and lower edge weights between entorhinal cortex and hippocampi (beta=0.30, p=0.03) predicted worse memory. Overall, no models contained significant interactions between the CR proxy and any brain metric.
Conclusions:
Results replicate previous work showing that a cognitive reserve proxy relates to cognition. However, cognitive reserve did not moderate brain burden's relationship to cognition. Across the sample, greater neuroinflammation was associated with worse executive function. For those with longer disease duration, higher neuroinflammation and lower medial temporal white matter connectivity related to worse memory. Future work should examine other brain burden metrics to determine whether/how cognitive reserve influences the cognitive trajectory of PD.
Social determinants of health (SDoH) are structural elements of our living and working environments that fundamentally shape health risks and outcomes. The Healthy People 2030 campaign delineated SDoH into five distinct categories that include: economic stability, education access/quality, healthcare access, neighborhood and built environment, and social and community contexts. Recent research has demonstrated that minoritized individuals have greater disadvantage across SDoH domains, which has been linked to poorer cognitive performance in older adulthood. However, the independent effects of SDoH on everyday functioning across and within racial groups remains less clear. The current project explored the association between SDoH factors and 10-year change in everyday functioning in a large sample of community-dwelling Black and White older adults.
Participants and Methods:
Data from 2,505 participants without dementia enrolled in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study (age M=73.5; 76% women; 28% Black/African American). Sociodemographic, census, and industry classification data were reduced into five SDoH factors: economic stability, education access and quality, healthcare access and quality, neighborhood and built environment, and social and community contexts. The Observed Tasks of Daily Living, a performance-based measure of everyday functioning with tasks involving medication management, finances, and telephone use, was administered at baseline, 1-, 2-, 3-, 5, and 10-year follow up visits. Mixed-effects models with age as the timescale tested (1) racial group differences in OTDL trajectories, (2) race x SDOH interactions on OTDL trajectories, and (3) associations between SDoH and OTDL trajectories stratified within Black and White older adults. Covariates included sex/gender, vocabulary score, Mini-Mental Status Examination, depressive symptoms, visual acuity, general health, training group status, booster status, testing site, and recruitment wave.
Results:
Black older adults had a steeper decline of OTDL performance compared to Whites (linear: b = -.25, quadratic b=-.009, ps < .001). There was a significant race x social and community context interaction on linear OTDL trajectories (b =.06, p=.01), but no other significant race x SDoH interactions were observed (bs =-.007-.05, ps=.73-.11). Stratified analyses revealed lower levels of social and community context were associated with steeper age-related linear declines in OTDL performance in Black (b = .08, p=.001), but not White older adults (b =.004, p=.64). Additionally, lower levels of economic stability were associated with steeper age-related linear declines in OTDL performance in Black (b =.07, p=.04), but not White older adults (b =.01, p=.35). Finally, no significant associations between other SDoH and OTDL trajectories were observed in Black (bs = -.04-.01, ps =.09-.80) or White (bs = -.02-.003, ps=.07-.96) older adults.
Conclusions:
SDoH, which measure aspects of structural racism, play an important role in accelerating age-related declines in everyday functioning. Lower levels of economic and community-level social resources are two distinct SDoH domains associated with declines in daily functioning that negatively impact Black, but not White, older adults. It is imperative that future efforts focus on both identifying and acting upon upstream drivers of SDoH-related inequities. Within the United States, this will require addressing more than a century of antiBlack sentiment, White supremacy, and unjust systems of power and policies designed to intentionally disadvantage minoritized groups.
This article revisits the origins of the Alexander Mosaic at Pompeii by focusing on the figure standing at Alexander's right hand. The starting point is Andreas Rumpf's suggestion that this “right-hand man” may be the patron of the original painting, who wished to advertise his own role in the represented battle. It is argued that Ptolemy I is perhaps the strongest candidate on historical grounds, and that interesting connections can be drawn between the mosaic and the historian Kleitarchos, who worked at the Ptolemaic court. Circumstantial support for a Ptolemaic connection is supplied by other finds from the House of the Faun, three of which are briefly re-examined.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
Turbulent fluxes make a substantial and growing contribution to the energy balance of ice surfaces globally, but are poorly constrained owing to challenges in estimating the aerodynamic roughness length (z0). Here, we used structure from motion (SfM) photogrammetry and terrestrial laser scanning (TLS) surveys to make plot-scale 2-D and 3-D microtopographic estimations of z0 and upscale these to map z0 across an ablating mountain glacier. At plot scales, we found spatial variability in z0 estimates of over two orders of magnitude with unpredictable z0 trajectories, even when classified into ice surface types. TLS-derived surface roughness exhibited strong relationships with plot-scale SfM z0 estimates. At the glacier scale, a consistent increase in z0 of ~0.1 mm d−1 was observed. Space-for-time substitution based on time since surface ice was exposed by snow melt confirmed this gradual increase in z0 over 60 d. These measurements permit us to propose a scale-dependent temporal z0 evolution model where unpredictable variability at the plot scale gives way to more predictable changes of z0 at the glacier scale. This model provides a critical step towards deriving spatially and temporally distributed representations of z0 that are currently lacking in the parameterisation of distributed glacier surface energy balance models.
A parchment codex of the early sixth century a.d., now in Vienna, contains a remarkable series of nearly 400 full-page illustrations of individual botanical species. These illustrations accompany an alphabetical recension of a pharmacological treatise on the medicinal properties of plants written by Dioskourides of Anazarbos, a Greek author of the first century a.d. Both the date of the codex and the style of its botanical illustrations have encouraged suggestions that the latter were modelled somehow on classical archetypes. This article presents new observations in support of the classical archetypes theory, but questions the traditional view that these archetypes were transmitted by ‘illustrated texts’ or ‘pattern books’ executed in papyrus or parchment. What follows is a new hypothesis concerning the nature of the artistic intermediaries used by painters, mosaicists and sculptors during antiquity.
Glaciers retreating in response to climate warming are progressively exposing primary mineral substrates to surface conditions. As primary production is constrained by nitrogen (N) availability in these emerging ecosystems, improving our understanding of how N accumulates with soil formation is of critical concern. In this study, we quantified how the distribution and speciation of N, as well as rates of free-living biological N fixation (BNF), change along a 2000-year chronosequence of soil development in a High Arctic glacier forefield. Our results show the soil N pool increases with time since exposure and that the rate at which it accumulates is influenced by soil texture. Further, all N increases were organically bound in soils which had been ice-free for 0–50 years. This is indicative of N limitation and should promote BNF. Using the acetylene reduction assay technique, we demonstrated that microbially mediated inputs of N only occurred in soils which had been ice-free for 0 and 3 years, and that potential rates of BNF declined with increased N availability. Thus, BNF only supports N accumulation in young soils. When considering that glacier forefields are projected to become more expansive, this study has implications for understanding how ice-free ecosystems will become productive over time.
We observed pediatric S. aureus hospitalizations decreased 36% from 26.3 to 16.8 infections per 1,000 admissions from 2009 to 2016, with methicillin-resistant S. aureus (MRSA) decreasing by 52% and methicillin-susceptible S. aureus decreasing by 17%, among 39 pediatric hospitals. Similar decreases were observed for days of therapy of anti-MRSA antibiotics.
Hyperbolic polariton modes are highly appealing for a broad range of applications in nanophotonics, including surfaced enhanced sensing, sub-diffractional imaging, and reconfigurable metasurfaces. Here we show that attenuated total reflectance (ATR) micro-spectroscopy using standard spectroscopic tools can launch hyperbolic polaritons in a Kretschmann–Raether configuration. We measure multiple hyperbolic and dielectric modes within the naturally hyperbolic material hexagonal boron nitride as a function of different isotopic enrichments and flake thickness. This overcomes the technical challenges of measurement approaches based on nanostructuring, or scattering scanning near-field optical microscopy. Ultimately, our ATR approach allows us to compare the optical properties of small-scale materials prepared by different techniques systematically.
Good education requires student experiences that deliver lessons about practice as well as theory and that encourage students to work for the public good—especially in the operation of democratic institutions (Dewey 1923; Dewy 1938). We report on an evaluation of the pedagogical value of a research project involving 23 colleges and universities across the country. Faculty trained and supervised students who observed polling places in the 2016 General Election. Our findings indicate that this was a valuable learning experience in both the short and long terms. Students found their experiences to be valuable and reported learning generally and specifically related to course material. Postelection, they also felt more knowledgeable about election science topics, voting behavior, and research methods. Students reported interest in participating in similar research in the future, would recommend other students to do so, and expressed interest in more learning and research about the topics central to their experience. Our results suggest that participants appreciated the importance of elections and their study. Collectively, the participating students are engaged and efficacious—essential qualities of citizens in a democracy.
We report the discovery in the Greenland ice sheet of a discrete layer of free nanodiamonds (NDs) in very high abundances, implying most likely either an unprecedented influx of extraterrestrial (ET) material or a cosmic impact event that occurred after the last glacial episode. From that layer, we extracted n-diamonds and hexagonal diamonds (lonsdaleite), an accepted ET impact indicator, at abundances of up to about 5×106 times background levels in adjacent younger and older ice. The NDs in the concentrated layer are rounded, suggesting they most likely formed during a cosmic impact through some process similar to carbon-vapor deposition or high-explosive detonation. This morphology has not been reported previously in cosmic material, but has been observed in terrestrial impact material. This is the first highly enriched, discrete layer of NDs observed in glacial ice anywhere, and its presence indicates that ice caps are important archives of ET events of varying magnitudes. Using a preliminary ice chronology based on oxygen isotopes and dust stratigraphy, the ND-rich layer appears to be coeval with ND abundance peaks reported at numerous North American sites in a sedimentary layer, the Younger Dryas boundary layer (YDB), dating to 12.9 ± 0.1 ka. However, more investigation is needed to confirm this association.
The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic information about nontarget resistance mechanisms in any of them ranges from none to little. Here, we report a study combining iGentifier transcriptome analysis, cDNA sequencing, and a heterologous microarray analysis to explore potential molecular and transcriptomic mechanisms of nontarget glyphosate resistance of horseweed. The results indicate that similar molecular mechanisms might exist for nontarget herbicide resistance across multiple resistant plants from different locations, even though resistance among these resistant plants likely evolved independently and available evidence suggests resistance has evolved at least four separate times. In addition, both the microarray and sequence analyses identified non–target-site resistance candidate genes for follow-on functional genomics analysis.
Stonehenge is a site that continues to yield surprises. Excavation in 2009 added a new and unexpected feature: a smaller, dismantled stone circle on the banks of the River Avon, connected to Stonehenge itself by the Avenue. This new structure has been labelled ‘Bluestonehenge’ from the evidence that it once held a circle of bluestones that were later removed to Stonehenge. Investigation of the Avenue closer to Stonehenge revealed deep periglacial fissures within it. Their alignment on Stonehenge's solstitial axis (midwinter sunset–midsummer sunrise) raises questions about the early origins of this ritual landscape.
There has been some confusion in the published literature concerning the structure of Metastudtite (UO2)O2(H2O)2 where differing unit cells and space groups have been cited for this compound. Owing to the absence of a refined structure for Metastudtite, Weck et al. (2012) have documented a first-principles study of Metastudtite using density functional theory (DFT). Their model presents the structure of Metastudtite as an orthorhombic (space group Pnma) structure with lattice parameters of a = 8.45, b = 8.72, and c = 6.75 Å. A Powder Diffraction File (PDF) database entry has been allocated for this hypothetical Metastudtite phase based on the DFT modeling (see 01-081-9033) and aforementioned Dalton Trans. manuscript. We have obtained phase pure powder X-ray diffraction data for Metastudtite and have confirmed the model of Weck et al. via Rietveld refinement (see Figure 1). Structural refinement of this powder diffraction dataset has yielded updated refined parameters. The new cell has been determined as a = 8.411(1), b = 8.744(1), and c = 6.505(1) Å; cell volume = 478.39 Å3. There are only subtle differences between the refined structure and that of the first-principles model derived from DFT. Notably, the b-axis is significantly contracted in the final refinement as compared with DFT. There were also subtle changes to the U1, O1, and O3 atom positions. Tabulated powder diffraction data (d's and I's) for the Metastudtite have been derived from the refined model and these new values can serve to augment the PDF entry 01-081-9033 with a more updated entry based on observed X-ray powder diffraction data.