We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
School food has a major influence on children’s diet quality and has the potential to reduce diet inequalities and non-communicable disease risk. Funded by the UK Prevention Research Partnership, we have established a UK school food system network. The overarching aim was to build a community to work towards a more health-promoting food and nutrition system in UK schools. The network has brought together a team from a range of disciplines, while the inclusion of non-academic users and other stakeholders, such as pupils and parents, has allowed the co-development of research priorities and questions. This network has used a combination of workshops, working groups and pump-priming projects to explore the school food system, as well as creating a systems map of the UK school food system and conducting network analysis of the newly established network. Through understanding the current food system and building network expertise, we hope to advance research and policy around food in schools. Further funding has been achieved based on these findings, working in partnership with policymakers and schools, while a Nutrition Society Special Interest Group has been established to ensure maximum engagement and future sustainability of the network. This review will describe the key findings and progress to date based on the work of the network, as well as a summary of the current literature, identification of knowledge gaps and areas of debate, according to key elements of the school food system.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
The spatial distribution of in situ sessile organisms, including those from the fossil record, provides information about life histories, such as possible dispersal and/or settlement mechanisms, and how taxa interact with one another and their local environments. At Nilpena Ediacara National Park (NENP), South Australia, the exquisite preservation and excavation of 33 fossiliferous bedding planes from the Ediacara Member of the Rawnsley Quartzite reveals in situ communities of the Ediacara Biota. Here, the spatial distributions of three relatively common taxa, Tribrachidium, Rugoconites, and Obamus, occurring on excavated surfaces were analyzed using spatial point pattern analysis. Tribrachidium have a variable spatial distribution, implying that settlement or post-settlement conditions/preferences had an effect on populations. Rugoconites display aggregation, possibly related to their reproductive methods in combination with settlement location availability at the time of dispersal and/or settlement. Additionally, post-settlement environmental controls could have affected Rugoconites on other surfaces, resulting in lower populations and densities. Both Tribrachidium and Rugoconites also commonly occur as individuals or in low numbers on a number of beds, thus constraining possible reproductive strategies and environmental/substrate preferences. The distribution of Obamus is consistent with selective settlement, aggregating near conspecifics and on substrates of mature microbial mat. This dispersal process is the first example of substrate-selective dispersal among the Ediacara Biota, thus making Obamus similar to numerous modern sessile invertebrates with similar dispersal and settlement strategies.
Infra-red thermography (IRT) is a non-invasive tool for measuring eye temperature as an indicator of stress and welfare in animals. Previous studies state that images are taken from 90° but do not specify a reference point or method of standardisation. The aims of the current study were to determine whether the position of the IRT camera has an impact on recorded temperature and which camera position is optimal for indicating stress in a mammal with anterolateral eyes. IRT images were taken from 90° to the nasal plane, eye and sagittal plane on the left side of the horses’ faces (n = 14) at eye level before and after exposure to a novel object. Distance and angle of measurement was standardised using ground markers. Temperature at each point of measurement was compared against heart rate variability. A significant difference was found between recorded temperature at all three of the points of measurement, both before and after the novel object test, suggesting that IRT camera position has an impact on eye temperature results. There was a significant strong positive correlation between eye temperature taken from 90° to the sagittal plane and heart rate variability, but no such correlation was observed from 90° to the nasal plane or eye. This suggests that a 90° angle in relation to the sagittal plane is the optimal position for taking eye temperature measurements using IRT, whereas 90° to the eye is commonly used. This study offers a validated protocol for using IRT to measure stress and welfare in mammals with anterolateral eyes.
The coronavirus disease 2019 (COVID-19) pandemic has placed significant burden on healthcare systems. We compared Clostridioides difficile infection (CDI) epidemiology before and during the pandemic across 71 hospitals participating in the Canadian Nosocomial Infection Surveillance Program. Using an interrupted time series analysis, we showed that CDI rates significantly increased during the COVID-19 pandemic.
Supplemental food from anthropogenic sources is a source of conflict with humans for many wildlife species. Food-seeking behaviours by black bears Ursus americanus and brown bears Ursus arctos can lead to property damage, human injury and mortality of the offending bears. Such conflicts are a well-known conservation management issue wherever people live in bear habitats. In contrast, the use of anthropogenic foods by the polar bear Ursus maritimus is less common historically but is a growing conservation and management issue across the Arctic. Here we present six case studies that illustrate how negative food-related interactions between humans and polar bears can become either chronic or ephemeral and unpredictable. Our examination suggests that attractants are an increasing problem, exacerbated by climate change-driven sea-ice losses that cause increased use of terrestrial habitats by bears. Growing human populations and increased human visitation increase the likelihood of human–polar bear conflict. Efforts to reduce food conditioning in polar bears include attractant management, proactive planning and adequate resources for northern communities to reduce conflicts and improve human safety. Permanent removal of unsecured sources of nutrition, to reduce food conditioning, should begin immediately at the local level as this will help to reduce polar bear mortality.
To describe the genomic analysis and epidemiologic response related to a slow and prolonged methicillin-resistant Staphylococcus aureus (MRSA) outbreak.
Design:
Prospective observational study.
Setting:
Neonatal intensive care unit (NICU).
Methods:
We conducted an epidemiologic investigation of a NICU MRSA outbreak involving serial baby and staff screening to identify opportunities for decolonization. Whole-genome sequencing was performed on MRSA isolates.
Results:
A NICU with excellent hand hygiene compliance and longstanding minimal healthcare-associated infections experienced an MRSA outbreak involving 15 babies and 6 healthcare personnel (HCP). In total, 12 cases occurred slowly over a 1-year period (mean, 30.7 days apart) followed by 3 additional cases 7 months later. Multiple progressive infection prevention interventions were implemented, including contact precautions and cohorting of MRSA-positive babies, hand hygiene observers, enhanced environmental cleaning, screening of babies and staff, and decolonization of carriers. Only decolonization of HCP found to be persistent carriers of MRSA was successful in stopping transmission and ending the outbreak. Genomic analyses identified bidirectional transmission between babies and HCP during the outbreak.
Conclusions:
In comparison to fast outbreaks, outbreaks that are “slow and sustained” may be more common to units with strong existing infection prevention practices such that a series of breaches have to align to result in a case. We identified a slow outbreak that persisted among staff and babies and was only stopped by identifying and decolonizing persistent MRSA carriage among staff. A repeated decolonization regimen was successful in allowing previously persistent carriers to safely continue work duties.
Severe paediatric obstructive sleep apnoea in typically developing children with adenotonsillar hypertrophy is primarily managed surgically. Non-emergency ENT surgery was paused early in the coronavirus disease 2019 pandemic and children were offered medical management for obstructive sleep apnoea.
Methods
A service evaluation was performed to assess the impact of continuous positive airway pressure alongside medical management for severe obstructive sleep apnoea.
Results
Over 5 months during 2020, in a tertiary care setting, two children (one boy and one girl), aged 2.7 years and 4.1 years, were offered continuous positive airway pressure and medical treatments for severe obstructive sleep apnoea whilst surgery was paused during the coronavirus disease 2019 pandemic. Both children failed to establish continuous positive airway pressure therapy because of ongoing disturbed sleep on ventilation, and they proceeded to adenotonsillectomy. Sleep-Related Breathing Disorder scale scores improved following surgical intervention.
Conclusion
Continuous positive airway pressure therapy is poorly tolerated in children with severe obstructive sleep apnoea secondary to adenotonsillar hypertrophy. Surgery remains the most appropriate treatment.
Earth is rapidly losing free-living species. Is the same true for parasitic species? To reveal temporal trends in biodiversity, historical data are needed, but often such data do not exist for parasites. Here, parasite communities of the past were reconstructed by identifying parasites in fluid-preserved specimens held in natural history collections. Approximately 2500 macroparasites were counted from 109 English Sole (Parophrys vetulus) collected between 1930 and 2019 in the Salish Sea, Washington, USA. Alpha and beta diversity were measured to determine if and how diversity changed over time. Species richness of parasite infracommunities and community dispersion did not vary over time, but community composition of decadal component communities varied significantly over the study period. Community dissimilarity also varied: prior to the mid-20th century, parasites shifted in abundance in a seemingly stochastic manner and, after this time period, a canalization of community change was observed, where species' abundances began to shift in consistent directions. Further work is needed to elucidate potential drivers of these changes and to determine if these patterns are present in the parasite communities of other fishes of the Salish Sea.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
To scale-out an experiential teaching kitchen in Parks and Recreation centres’ after-school programming in a large urban setting among predominantly low-income, minority children.
Design:
We evaluated the implementation of a skills-based, experiential teaching kitchen to gauge programme success. Effectiveness outcomes included pre–post measures of child-reported cooking self-efficacy, attitudes towards cooking, fruit and vegetable preference, intention to eat fruits and vegetables and willingness to try new fruits and vegetables. Process outcomes included attendance (i.e., intervention dose delivered), cost, fidelity and adaptations to the intervention.
Setting:
After-school programming in Parks and Recreation Community centres in Nashville, TN.
Participants:
Predominantly low-income minority children aged 6–14 years.
Results:
Of the twenty-five city community centres, twenty-one successfully implemented the programme, and nineteen of twenty-five implemented seven or more of the eight planned sessions. Among children with pre–post data (n 369), mean age was 8·8 (sd 1·9) years, and 53·7 % were female. All five effectiveness measures significantly improved (P < 0·001). Attendance at sessions ranged from 36·3 % of children not attending any sessions to 36·6 % of children attending at least four sessions. Across all centres, fidelity was 97·5 %. The average food cost per serving was $1·37.
Conclusions:
This type of nutritional education and skills building experiential teaching kitchen can be successfully implemented in a community setting with high fidelity, effectiveness and organisational alignment, while also expanding reach to low-income, underserved children.
To estimate population-based rates and to describe clinical characteristics of hospital-acquired (HA) influenza.
Design:
Cross-sectional study.
Setting:
US Influenza Hospitalization Surveillance Network (FluSurv-NET) during 2011–2012 through 2018–2019 seasons.
Methods:
Patients were identified through provider-initiated or facility-based testing. HA influenza was defined as a positive influenza test date and respiratory symptom onset >3 days after admission. Patients with positive test date >3 days after admission but missing respiratory symptom onset date were classified as possible HA influenza.
Results:
Among 94,158 influenza-associated hospitalizations, 353 (0.4%) had HA influenza. The overall adjusted rate of HA influenza was 0.4 per 100,000 persons. Among HA influenza cases, 50.7% were 65 years of age or older, and 52.0% of children and 95.7% of adults had underlying conditions; 44.9% overall had received influenza vaccine prior to hospitalization. Overall, 34.5% of HA cases received ICU care during hospitalization, 19.8% required mechanical ventilation, and 6.7% died. After including possible HA cases, prevalence among all influenza-associated hospitalizations increased to 1.3% and the adjusted rate increased to 1.5 per 100,000 persons.
Conclusions:
Over 8 seasons, rates of HA influenza were low but were likely underestimated because testing was not systematic. A high proportion of patients with HA influenza were unvaccinated and had severe outcomes. Annual influenza vaccination and implementation of robust hospital infection control measures may help to prevent HA influenza and its impacts on patient outcomes and the healthcare system.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years.