We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Persistent malnutrition is associated with poor clinical outcomes in cancer. However, assessing its reversibility can be challenging. The present study aimed to utilise machine learning (ML) to predict reversible malnutrition (RM) in patients with cancer. A multicentre cohort study including hospitalised oncology patients. Malnutrition was diagnosed using an international consensus. RM was defined as a positive diagnosis of malnutrition upon patient admission which turned negative one month later. Time-series data on body weight and skeletal muscle were modelled using a long short-term memory architecture to predict RM. The model was named as WAL-net, and its performance, explainability, clinical relevance and generalisability were evaluated. We investigated 4254 patients with cancer-associated malnutrition (discovery set = 2977, test set = 1277). There were 2783 men and 1471 women (median age = 61 years). RM was identified in 754 (17·7 %) patients. RM/non-RM groups showed distinct patterns of weight and muscle dynamics, and RM was negatively correlated to the progressive stages of cancer cachexia (r = –0·340, P < 0·001). WAL-net was the state-of-the-art model among all ML algorithms evaluated, demonstrating favourable performance to predict RM in the test set (AUC = 0·924, 95 % CI = 0·904, 0·944) and an external validation set (n 798, AUC = 0·909, 95 % CI = 0·876, 0·943). Model-predicted RM using baseline information was associated with lower future risks of underweight, sarcopenia, performance status decline and progression of malnutrition (all P < 0·05). This study presents an explainable deep learning model, the WAL-net, for early identification of RM in patients with cancer. These findings might help the management of cancer-associated malnutrition to optimise patient outcomes in multidisciplinary cancer care.
The dissolution kinetics occurring on clay minerals are influenced by various factors, including pH, temperature and mineral lattice structure. However, the influence of the surfactant is rarely studied. In the present work, cationic surfactants were investigated in terms of the dissolution of clay minerals in acidic environments. Kaolinite was selected as the representative clay mineral. The cationic surfactant inhibited the dissolution of clay minerals because it limited the attack of H+ on the kaolinite surface and then inhibited the dissolution of kaolinite by modifying the hydrophilicity of the kaolinite surface towards hydrophobicity. The inhibition ability of the surfactant might be related to its molecular structure and the type of acid used in dissolution experiments.
Although it is well established that gestational diabetes mellitus (GDM) is associated with fetal overgrowth in singleton pregnancies, little is known about its role in twins. We aimed to explore the relationship between GDM and the longitudinal fetal growth in twin pregnancies. This was a retrospective matched cohort study of GDM and non-GDM twin pregnancies delivered ≥36 weeks without other complications. All the women performed ≥3 ultrasounds after 22 weeks. Linear mixed models (LMMs) were used to explore the relationships between longitudinal fetal growth trajectories and GDM. Group-based trajectory modeling (GBTM) and generalized estimating equation (GEE) were applied to identify the latent growth patterns and investigate their relationships with GDM. In total, 215 GDM and 645 non-GDM twins were included, the majority of the patients did not require medication therapy (n = 202, GDMA1). LMM revealed that, compared with non-GDM, GDM was associated with an average increase in fetal weight of 4.36 g (95% CI [1.25, 7.48]) per week. GBTM and GEE further revealed that GDM increased the odds of fetal weight trajectory to nearly 40% of the total fetal weight trajectory, classified into the high-speed group (aOR = 1.39, 95% CI [1.03, 1.88]), associating with a 49.44 g (95% CI [11.41, 87.48]) increase in birth weight. Subgroup analysis revealed that all these differences were only significant among the GDMA1 pregnancies (p < .05). GDM (GDMA1) is significantly associated with an increase in fetal weight during gestation in twin pregnancies. However, this acceleration is mild, and its significance requires further exploration.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
This study investigates the impacts of the timing of an extreme cyclone that occurred in August 2012 on the sea-ice volume evolution based on the Arctic Ice Ocean Prediction System (ArcIOPS). By applying a novel cyclone removal algorithm to the atmospheric forcing during 4–12 August 2012, we superimpose the derived cyclone component onto the atmospheric forcing one month later or earlier. This study finds that although the extreme cyclone leads to strong sea-ice volume loss in all runs, large divergence occurs in sea-ice melting mechanism in response to various timing of the cyclone. The extreme cyclone occurred in August, when enhanced ice volume loss is attributed to ice bottom melt primarily and ice surface melt secondarily. If the cyclone occurs one month earlier, ice surface melt dominates ice volume loss, and earlier appearance of open water within the ice zone initiates positive ice-albedo feedback, leading to a long lasting of the cyclone-induced impacts for approximately one month, and eventually a lower September ice volume. In contrast, if the cyclone occurs one month later, ice bottom melt entirely dominates ice volume loss, and the air-open water heat flux in the ice zone tends to offset ice volume loss.
Missed detection probability is a critical metric for the integrity performance of receiver autonomous integrity monitoring (RAIM) in the presence of faults. The traditional missed detection probability evaluation method for RAIM is limited by impractical time consumption because of the absence of accurate searching interval for the magnitude of a worst-case fault. To address this issue, the searching interval for the magnitude of a worst-case fault is constructed by the combination of minimum detectable magnitude and minimum hazardous magnitude, and the searching interval adjustment is designed to avoid the absence of worst-case fault magnitude so that the maximum missed detection probability can be accurately evaluated. The simulation result indicates that the proposed method can achieve higher accuracy for the worst-case fault magnitude searching. Furthermore, the accuracy of worldwide evaluated missed detection rate can achieve an improvement of 57·66% at most by the proposed method for the different classical RAIM algorithms.
In the present study, acid-modified attapulgite was used, as an adsorbent, to remove as much Cd2+ as possible from aqueous solution. Static adsorption experiments using powdered acid-modified attapulgite, and dynamic adsorption using granular acid-modifed attapulgite, were conducted to explore the practical application of modified attapulgite in the adsorption of Cd2+. The modified attapulgite had a larger specific surface area and thinner fibrous crystals than the unmodified version. No obvious differences were noted, in terms of the crystal structure, between the natural attapulgite and the modified version. The effects of initial concentration, pH, contact time, and ionic strength on the adsorption of Cd2+ were investigated, and the results showed that the adsorption capacity of the modified attapulgite was increased with increasing pH and the initial Cd2+ concentration. The adsorption properties were analyzed by means of dynamic adsorption tests with respect to various Cd2+ concentrations and flow rates. The maximum adsorption capacity of 8.83 mg/g occurred at a flow rate of 1 mL/min and at an initial concentration of 75 mg/L. Because there was better accord between the data and a pseudo-second order model than a pseudo-first-order model, external mass transfer is suggested to be the rate-controlling process. The experimental data were also fitted for the intraparticle diffusion model, implying that the intraparticle diffusion of Cd2+ onto the modified attapulgite was also important for controlling the adsorption process. The Bohart-Adams model was more suitable than the Thomas model for describing the dynamic behavior with respect to the flow rate and the initial Cd2+ concentration. This research provided the theoretical basis for the dynamic adsorption of Cd2+ on the modified attapulgite. Compared to the powdered modified attapulgite, the dynamic adsorption by granular modified attapulgite appeared more favorable in terms of practical application.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
The provenance of clays in shaley intervals across the Permian-Triassic boundary (PTB) in the Xiakou section was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), and the results suggest that the layers have three different provenances. The layer P267-b has a loose texture with an oriented arrangement of detrital clay particles, consisting mainly of illite and minor chlorite with irregular outlines or ragged edges. The dehydroxylation reaction of the clays in this layer is characterized by an intense overlapping endothermic effect at ∼600°C, produced by mixed-layer illite-smectite (I-S) consisting of a mixture of cis-vacant (cv)and trans-vacant (tv) octahedral sheets derived from weathering of detrital illite. Layer P259-b shows a more condensed texture with a dark color, and is composed mainly of I-S and minor illite and chlorite. Evidence for alteration of detrital materials to clay mineral aggregates was observed under SEM. Similar to layer P267-b, an intense dehydroxylation reaction occurs at ∼600°C, indicating clays consisting of a mixture of tv and cv sheets and, therefore, that the sediments were derived from a mixture of terrigenous and volcanic sources, combining the texture and the clay-mineral composition of those sediments. However, the undisturbed lamination and relatively small grain size in this bed indicate a low-energy depositional environment. The clay-mineral compositions of the other layers are mainly of I-S with minor amounts of illite and chlorite. Their endothermic dehydroxylation reaction, however, occurs mainly at ∼660°C, indicating that cv sheets are dominant in the clays, and thus, are derived from smectites of volcanic origin. Observations by SEM show that clay minerals grow at the expense of detrital materials, confirming the diagenetic alteration of volcanic ashes in marine sediments. Illite and chlorite are the detrital clay minerals in the clay layers across the PTB in the Xiakou section. The presence of detrital illite and chlorite in the sediments means that an arid climate prevailed in the region during the end-Permian and early Triassic period.
The congruence between rock quantity and biodiversity through the Phanerozoic has long been acknowledged. Rock record bias and common cause are the most discussed hypotheses: the former emphasizes that the changes in diversity through time fully reflect rock availability; the latter posits that the correlation between rock and fossil records is driven by a common cause, such as sea-level changes. Here, we use the Geobiodiversity Database (GBDB), a large compilation of the rock and fossil records, to test the rock bias hypothesis. In contrast to other databases on fossil occurrences, the section-based GBDB also records unfossiliferous units. Our multiple regression analysis shows that 85% of the variation in sampled diversity can be attributed to the rock record, meaning that major peaks and drops in observed diversity are mainly due to the rock record. Our results support a strong covariation between the number of unfossiliferous units and sampled diversity, indicating a genuine rock bias that arose from sampling effort that is independent of fossil content. This provides a compelling argument that the rock record bias is more prominent than common cause in explaining large-scale variations in sampled diversity. Our study suggests that (1) no single proxy can fully represent rock record bias in predicting biodiversity, (2) rock bias strongly governs sampled diversity in both marine and terrestrial communities, and (3) unfossiliferous strata contain critical information in predicting diversity of marine and terrestrial animals.
To explore the relationship between dietary antioxidant quality score (DAQS) and Cd exposure both alone and in combination with osteoporosis and bone mineral density (BMD) among postmenopausal women. In total, 4920 postmenopausal women from the National Health and Nutrition Examination Survey were included in this cross-sectional study. Weighted univariate and multivariate logistic regression analyses to assess the association between DAQS and Cd exposure with femur neck BMD, total femur BMD, osteoporosis among postmenopausal women, respectively, and the coexistence effect of DAQS and Cd exposure. Four hundred and ninety-nine had osteoporosis. DAQS (OR = 0·86, 95 % CI 0·77, 0·97) and high DAQS (OR = 0·60, 95 % CI 0·36, 0·99) were found to be associated with decreased odds of osteoporosis, while Cd exposure (OR = 1·34, 95 % CI 1·04, 1·72) and high Cd exposure (OR = 1·45, 95 % CI 1·02, 2·06) were related to increased odds of osteoporosis. A positive correlation was observed between high DAQS and both total femur BMD and femur neck BMD. Conversely, Cd exposure was found to be negatively correlated with total femur BMD and femur neck BMD. Additionally, taking low-Cd and high-quality DAQS group as reference, the joint effect of Cd exposure and DAQS showed greater increased odds of osteoporosis and decreased total femur BMD and femur neck BMD as Cd level and DAQS combinations worsened. There may be an interaction between Cd exposure and DAQS for femur neck BMD, total femur BMD, and osteoporosis in postmenopausal women.
Preschool autistic children represent an important part of preschool education, so we need to create a good material and psychological environment for them. In the preschool education environment, special attention has been focused on the physical and mental health, interests, hobbies, and interpersonal skills training of children with autism. Research has adopted interactive games and behavioral skills training to assist in treating autistic children in preschool education.
Subjects and Methods
Firstly, 8 children diagnosed with autism were selected from a certain kindergarten. These children were evenly distributed across two regular classrooms, with 4 students in each class, and interacted with ordinary children. Next, they were divided into a control group and an experimental group, both of which were ordinary children aged 5-6 years old. Intervention training was conducted to compare the scores of children with autism in various dimensions. Finally, SPSS23.0 was used for data analysis and t-test.
Results
The evaluation of recognition and understanding of children with autism in the control group before and after intervention was t=-0.41, P>0.05, and t=-0.44, P>0.05, respectively, with no statistical significance. The evaluation of the experimental group before and after intervention were t=15.41, P<0.05, and t=69.41, P<0.001, respectively, with statistical significance. Prove the feasibility of intervention training effectiveness.
Conclusions
Interactive training interventions for preschool children with autism are of great help to their physical and mental health and provide strategic solutions for interactive training and skill training for preschool children to promote harmonious coexistence with ordinary children.
Talmy’s (1991; 2000a; 2000b) influential work on motion events provides a strong two-way typology that can examine and account for the typology of a language, but this framework is basically synchronic. It may not be equally valid to explain language change. In this paper, we apply the event integration theory and its latest development, The Macro-event Hypothesis (Li, 2020, 2023), to account for the development of the causative verb 使-shǐ-make (SHI for short) in Chinese. This study reveals that, firstly, the multi-functional behavior of SHI represents a typical case of grammaticalization, with a full verb acquiring the role of conjunction and expressing abstract meanings. Secondly, the semantic division of the causative and non-causative uses of SHI in Contemporary Chinese is the most clear-cut. Thirdly, causative SHI shows a greater level of semantic bleaching, and the construction profiles a single causal activity and has a higher degree of event integration when compared to its lexical verbal use. The constructional grammaticalization of SHI confirms that event integration is key to its development. This study verifies The Macro-event Hypothesis of a continuum of grammaticalization in language and uncovers the process of semantic gradation that takes place in Chinese.
Insect response to cold stress is often associated with adaptive strategies and chemical variation. However, low-temperature domestication to promote the cold tolerance potential of Bactrocera dorsalis and transformation of main internal substances are not clear. Here, we use a series of low-temperature exposure experiments, supercooling point (SCP) measurement, physiological substances and cryoprotectants detection to reveal that pre-cooling with milder low temperatures (5 and 10°C) for several hours (rapid cold hardening) and days (cold acclimation) can dramatically improve the survival rate of adults and pupae under an extremely low temperature (−6.5°C). Besides, the effect of rapid cold hardening for adults could be maintained even 4 h later with 25°C exposures, and SCP was significantly declined after cold acclimation. Furthermore, content of water, fat, protein, glycogen, sorbitol, glycerol and trehalose in bodies were measured. Results showed that water content was reduced and increased content of proteins, glycogen, glycerol and trehalose after two cold domestications. Our findings suggest that rapid cold hardening and cold acclimation could enhance cold tolerance of B. dorsalis by increasing proteins, glycerol, trehalose and decreasing water content. Conclusively, identifying a physiological variation will be useful for predicting the occurrence and migration trend of B. dorsalis populations.
Intertemporal choices involve tradeoffs between outcomes that occur at different times. Most of the research has used pure gains tasks and the discount rates yielding from those tasks to explain and predict real-world behaviors and consequences. However, real decisions are often more complex and involve mixed outcomes (e.g., sooner-gain and later-loss or sooner-loss and later-gain). No study has used mixed gain-loss intertemporal tradeoff tasks to explain and predict real-world behaviors and consequences, and studies involving such tasks are also scarce. Considering that tasks involving a combination of gains and losses may yield different discount rates and that existing pure gains tasks do not explain or predict real-world outcomes well, this study conducted two experiments to compare the discount rates of mixed gain-loss intertemporal tradeoffs with those of pure gains or pure losses (Experiment 1) and to examine whether these tasks predicted different real-world behaviors and consequences (Experiment 2). Experiment 1 suggests that the discount rate ordering of the four tasks was, from highest to lowest, pure gains, sooner-loss and later-gain, pure losses, and sooner-gain and later-loss. Experiment 2 indicates that the evidence supporting the claim that the discount rates of the four tasks were related to different real-world behaviors and consequences was insufficient.
In “The value of nothing: asymmetric attention to opportunity costs drives intertemporal decision making” Read, Olivola and Hardisty (2017) proposed an asymmetric subjective opportunity cost (ASOC) effect to explain and predict why impatience can be detected in intertemporal choice. This work deserves to be replicated and extended for its novel and potentially important findings. The present study aimed to examine the reliability and robustness of the evidence presented by Read et al. by conducting precise replications of their key findings in Study 1. The ASOC effect (Read, et al., 2017) was important for expanding its application and reported to be typically stronger when baseline larger-but-later option (LL) and smaller-but-sooner option (SS) preferences were closer to 50% in the authors’ original condition. Therefore, the present study also aimed to replicate and test the ASOC effect when baseline LL preferences were higher or lower than those in the original condition. We intended to set two additional conditions wherein either LL or SS is more obviously favored (i.e., baseline LL preferences were higher or lower than those in the original condition) by respectively applying the common difference effect (Kirby & Herrnstein, 1995) and the unit effect (Burson, Larrick & Lynch Jr., 2009; Pandelaere, Briers & Lembregts, 2011). Having successfully generated two more obviously favored conditions, the ASOC effect was replicated and confirmed under the original condition and one additional condition wherein SS was more obviously favored. However, the ASOC effect was not detected under the other additional condition wherein LL was more obviously favored. The implications of these findings were discussed.
The Cambrian saw a dramatic increase in metazoan diversity and abundance. Between-assemblage diversity (beta diversity) soared in the first three Cambrian stages, suggesting a rapid increase in the geodisparity of marine animals during the Cambrian radiation. However, it remains unclear how these changes scale up to first-order biogeographic patterns. Here we outline time-traceable provinces for marine invertebrates across the Cambrian period using a compositional network based on species-level fossil occurrence data. Results confirm an increase in regional differences of faunal composition and a decrease in by-species geographic distribution during the first three stages. We also show that general biogeography tends to be reshaped after global extinction pulses. We suggest that the abrupt biogeographic differentiation during the Cambrian radiation was controlled by a combination of tectonics, paleoclimate, and dispersal capacity changes.
Benzodiazepine receptor agonists (BZRAs) are commonly used clinically and data on their hazardous use from large populations of psychiatric patients is limited.
Aims
To assess the current status of hazardous BZRA use and related factors in Chinese out-patient psychiatric settings.
Method
The study included out-patients with at least one BZRA prescription from five psychiatric settings in east, central and west China in 2018. Demographic and prescription information were extracted from the electronic prescription database. We defined the co-occurrence of overdose and long-term use as hazardous use, and patients whose recorded diagnoses did not meet any indications approved by the Chinese Food and Drug Administration as over-indication users. Additionally, 200 hazardous users were randomly selected for follow-up interview to confirm the actual situation.
Results
Among 720 054 out-patients, 164 450 (22.8%) had at least one BZRA prescription; 55.9% of patients were prescribed over-indication and 3% were defined as hazardous users. Multilevel multivariate regression analysis with hospital as a random effect showed that factors associated with hazardous use were older age (18–64 years: β = 0.018; 95% CI 0.013–0.023; >65 years: β = 0.015; 95% CI 0.010–0.021), male (β = 0.005, 95% CI 0.003–0.007), over-indication (β = 0.013, 95% CI 0.012–0.015), more out-patient visits (β = 0.006, 95% CI 0.006–0.006) and more visits to different doctors (β = 0.007, 95% CI 0.007–0.008); 98.5% of hazardous users (197/200) could not be contacted.
Conclusions
BZRAs are commonly used and there is a relatively large proportion of over-indication users among Chinese psychiatric out-patients. However, only a small proportion of hazardous users were detected. The study highlights how to use prescription data to support improvements in clinical practice.
Redesign is a widespread strategy for product improvement whose essence is the optimization of design parameters (DPs) considering the trade-off between customer satisfaction and cost concerns. Similar to the relation between customer requirements (CRs) and customer satisfaction, the sensitivity of customer satisfaction is diverse to different DPs. In this study, a sensitivity-enhanced customer satisfaction function is defined for redesign model construction. This fills the research gap in product redesign that lacking of consideration and quantification of customer satisfaction sensitivity. First, a sensitivity index is defined based on Kano indices for analyzing sensitivity of customer satisfaction in different DP categories. Second, traditional customer satisfaction function has been improved by injecting the sensitivity of customer satisfaction to the variations of DPs. Subsequently, a DP optimization model is established to maximize shared surplus between customers and enterprise. Finally, a case study involving the redesign of a braking system of automobile is implemented to demonstrate the effectiveness and rationality of the proposed approach. The results show that the improved customer satisfaction function can reflect a more nuanced relationship between customer satisfaction and fulfilment level of DPs. Additionally, the proposed redesign model helps designers determine the target values of DPs under a better trade-off and enhances enterprise competitiveness.