We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
American silk moth, Antheraea polyphemus Cramer 1775 (Lepidoptera: Saturniidae), native to North America, has potential significance in sericulture for food consumption and silk production. To date, the phylogenetic relationship and divergence time of A. polyphemus with its Asian relatives remain unknown. To end these issues, two mitochondrial genomes (mitogenomes) of A. polyphemus from the USA and Canada respectively were determined. The mitogenomes of A. polyphemus from the USA and Canada were 15,346 and 15,345 bp in size, respectively, with only two transitions and five indels. The two mitogenomes both encoded typical mitochondrial 37 genes. No tandem repeat elements were identified in the A+T-rich region of A. polyphemus. The mitogenome-based phylogenetic analyses supported the placement of A. polyphemus within the genus Antheraea, and revealed the presence of two clades for eight Antheraea species used: one included A. polyphemus, A. assamensis Helfer, A. formosana Sonan and the other contained A. mylitta Drury, A. frithi Bouvier, A. yamamai Guérin-Méneville, A. proylei Jolly, and A. pernyi Guérin-Méneville. Mitogenome-based divergence time estimation further suggested that the dispersal of A. polyphemus from Asia into North America might have occurred during the Miocene Epoch (18.18 million years ago) across the Berling land bridge. This study reports the mitogenome of A. polyphemus that provides new insights into the phylogenetic relationship among Antheraea species and the origin of A. polyphemus.
Direct numerical simulations have been conducted to explore the coupling effect of the thermoelectric effect and vertical convection (VC) in a square cavity composed of liquid lithium and stainless steel under different Hartmann numbers at $Ra=10^5$. By leveraging thermoelectric phenomena, an innovative approach is proposed to actively modulate heat transfer efficiency. The core concept lies in modulating the intensity of large-scale circulation (LSC) in VC systems through the torque generated by the interaction between thermoelectric currents and magnetic fields via Lorentz forces. The findings reveal that when the torque aligns with the direction of LSC induced by pure buoyancy, both momentum and heat transfer are enhanced. However, due to the magnetic damping itself, this enhancement is not sustained indefinitely, resulting in a trend of initial increase followed by decline in both momentum and heat transfer efficiency. Conversely, when the magnetic field direction is reversed, causing the Lorentz force torque to oppose the buoyancy-driven circulation, both momentum and heat transfer efficiency diminish until the flow reverses. By varying the magnetic field intensity, three distinct flow regimes are identified: the buoyancy-dominated regime, the thermoelectric-dominated regime and the magnetic-damping-dominated regime. The transition between the buoyancy-dominated regime and thermoelectric-dominated regime – specifically, the onset of flow reversal – is analysed through a boundary-layer–bulk–boundary-layer coupling model. This model enables precise prediction of the critical $Ha$ based on the torque balance between buoyancy forces and thermoelectrically induced Lorentz forces, and demonstrates close agreement with numerical simulations.
Large-eddy simulations have been conducted to investigate the decay law of homogeneous turbulence influenced by a magnetic field within a cubic domain, employing periodic boundary conditions. The initial integral Reynolds number is approximately 1000, while the initial interaction number $N$ ranges from 0.1–100. The results reveal that the Joule cone angle $\theta$, half of the Joule cone, decays as $\cos \theta \sim t^{-1/2}$ when $N \gg 1$. In the nonlinear stage, small-scale vortices gradually recover and restore three-dimensionality. Moreover, the corresponding critical state at small scales, marking the transition from quasi-two-dimensional structure to the onset of three-dimensionality, has been quantitatively defined. During the linear stage, based on the true magnetic damping number ($\tau _t = \rho / (\sigma {\boldsymbol{B}}^2 \cos ^2 \psi )$, where $\sigma$, $\boldsymbol{B}$ and $\psi$ denote the electrical conductivity, magnetic field and the angle between the wavevector and $\boldsymbol{B}$ in Fourier space, respectively), Moffatt’s decay law, $K \sim t^{-1/2}$, manifests at distinct times and zones in the Fourier space, with $K$ signifying turbulent kinetic energy. In the nonlinear stage, for $N \gg 1$, a $-3$ slope in the energy power spectrum is prominently observed over an extended period. The near-equivalence of the characteristic time scales of inertial and Lorentz forces in the inertial subrange suggests a quasiequilibrium state between energy transfer and Joule dissipation in Fourier space, thereby corroborating the hypothesis proposed by Alemany et al. 1979 Journal de Mecanique18(2): 277–313. Additionally, it is observed that pressure mediates energy transfer from horizontal kinetic energy ($K_{\parallel }$) to vertical kinetic energy ($K_{\bot }$), accelerating the decay of $K_{\parallel }$. Notably, concurrent inverse and direct energy transfers emerge during the decay process. Our analysis reveals that the ratio $R$ of the maximum inverse to maximum direct energy flux correlates with the dimensionality of the turbulence, following the scaling law $R\sim (\cos \theta )^{-2.2}$.
The outer solar system is theoretically predicted to harbour an undiscovered planet, often referred to as Planet Nine. Simulations suggest that its gravitational influence could explain the unusual clustering of minor bodies in the Kuiper Belt. However, no observational evidence for Planet Nine has been found so far, as its predicted orbit lies far beyond Neptune, where it reflects only a faint amount of Sunlight. This work aims to find Planet Nine candidates by taking advantage of two far-infrared all-sky surveys, which are IRAS and AKARI. The epochs of these two surveys were separated by 23 years, which is large enough to detect Planet Nine’s $\sim3'$/year orbital motion. We use a dedicated AKARI Far-Infrared point source list for the purpose of our Planet Nine search — AKARI-FIS Monthly Unconfirmed Source List (AKARI-MUSL), which includes sources detected repeatedly only in hours timescale, but not after months. AKARI-MUSL is more advantageous than the AKARI Bright Source Catalogue (AKARI-BSC) for detecting moving and faint objects like Planet Nine with a twice-deeper flux detection limit. We search for objects that moved slowly between IRAS and AKARI detections given in the catalogues. First, we estimated the expected flux and orbital motion of Planet Nine by assuming its mass, distance, and effective temperature to ensure it can be detected by IRAS and AKARI, then applied the positional and flux selection criteria to narrow down the number of sources from the catalogues. Next, we produced all possible candidate pairs including one IRAS source and one AKARI source whose angular separations were limited between 42′ and $69.6'$, corresponding to the heliocentric distance range of 500 – 700 AU and the mass range of 7 – 17M$_{\oplus}$. There are 13 candidate pairs obtained after the selection criteria. After image inspection, we found one good candidate, of which the IRAS source is absent from the same coordinate in the AKARI image after 23 years and vice versa. However, AKARI and IRAS detections are not enough to determine the full orbit of this candidate. This issue leads to the need for follow-up observations, which will determine the Keplerian motion of our Planet Nine candidate.
In the 2023 judgment of Nicaragua v. Colombia, the International Court of Justice ruled that, under customary international law, a State’s entitlement to a continental shelf beyond 200 nautical miles from its baselines is not permitted to extend within 200 nautical miles from the baselines of another State. In identifying this customary rule, the Court did not apply the two-element approach. The state practice relied upon by the Court to identify the general practice is not sufficiently widespread, representative, or consistent. The opinio juris is inferred from such state practice, which is not necessarily driven by a sense of legal obligation. The Court’s assertion of the customary rule constitutes, in effect, a rewriting of the relevant provisions of the United Nations Convention on the Law of the Sea, amounting to a legislative exercise.
An unusual orbital element clustering of Kuiper belt objects (KBOs) has been observed. The most promising dynamic solution is the presence of a giant planet in the outer Solar system, Planet Nine. However, due to its extreme distance, intensive searches in optical have not been successful. We aim to find Planet Nine in the far-infrared, where it has the peak of the black body radiation, using the most sensitive all-sky far-infrared survey to date, AKARI. In contrast to optical searches, where the energy of reflected sunlight decreases by $d^{4}$, thermal radiation in the infrared decreases with the square of the heliocentric distance $d^{2}$. We search for moving objects in the AKARI Single Scan Detection List. We select sources from a promising region suggested by an N-body simulation from Millholland and Laughlin 2017: $30^{\circ}\lt$ R.A. $\lt50^{\circ}$ and $-20^{\circ}\lt$ Dec. $\lt20^{\circ}$. Known sources are excluded by cross-matching AKARI sources with 9 optical and infrared catalogues. Furthermore, we select sources with small background strength to avoid sources in the cirrus. Since Planet Nine is stationary in a timescale of hours but moves on a monthly scale, our primary strategy is to select slowly moving objects that are stationary in 24 h but not in six months, using multiple single scans by AKARI. The selected slowly moving AKARI sources are scrutinised for potential contamination from cosmic rays. Our analysis reveals two possible Planet Nine candidates whose positions and flux are within the theoretical prediction ranges. These candidates warrant further investigation through follow-up observations to confirm the existence and properties of Planet Nine.
Fuel pre-injection in the inlet of a hypersonic engine has been proven to be advantageous in the range of the very high flight Mach numbers. In this paper, a rapid inlet performance analysis model with fuel pre-injection is proposed. The modelling process is divided into two stages. Firstly, the baseline inlet model is provided based on the working principle of the inlet. Then, the newly proposed fuel injection and heat release model is added to the baseline inlet model. Among them, the fuel injection and heat release model is equivalent to increasing the compression angle in the cold state. And in the hot state the effect of the fuel heat release will be considered in addition to the effect of cold state. The research results show as the equivalence ratio increases, the equivalent compression angle also increases, but the two are not in a linear relationship. Based on this pattern of effect, fuel injection can be used to regulate the shock wave position and accurately control the flow rate of the inlet. In addition, by comparing to numerical simulation, it is found that the analysis model can almost reasonably predict the performance of the pre-injection inlet. However, the calculation of drag coefficient has some deviation compared to numerical simulation, which is probably due to the lack of consideration of friction drag and the interaction between the shock wave and boundary layer in the model analysis. Overall, the modelling method proposed in this paper can reflect the effect of fuel injection on inlet performance, which can be used to optimise injection strategy in the future.
We investigate the statistical properties of kinetic and thermal dissipation rates in two-dimensional/three-dimensional vertical convection of liquid metal ($Pr = 0.032$) within a square cavity. Two situations are specifically discussed: (i) classical vertical convection with no external forces and (ii) vertical magnetoconvection with a horizontal magnetic field. Through an analysis of dissipation fields and a reasonable approximation of buoyancy potential energy sourced from vertical heat flux, the issue of the ‘non-closure of the dissipation balance relation’, which has hindered the application of the GL theory in vertical convection, is partially resolved. The resulting asymptotic power laws are consistent with existing laminar scaling theories and even show certain advantages in validating simulations with large Prandtl number ($Pr$). Additionally, a full-parameter model and prefactors applicable to low-$Pr$ fluids are provided. The extension to magnetoconvection naturally introduces the approximate expression for total buoyancy potential energy and necessitates adjustments to the contributions of kinetic dissipation in both the bulk and boundary layer. The flow dimensionality and boundary layer thickness are key considerations in this analysis. The comprehension of Joule dissipation has been updated: the Lorentz force generates positive dissipation in the bulk by suppressing convection, while in the Hartmann layer, shaping the exponential boundary layer requires the fluid to perform positive work to accelerate, leading to negative dissipation. Finally, the proposed transport equations for magnetoconvection are supported by current direct numerical simulation (DNS) and literature data, and the applicability of the model is discussed.
Brown dwarfs are failed stars with very low mass (13–75 Jupiter mass) and an effective temperature lower than 2 500 K. Their mass range is between Jupiter and red dwarfs. Thus, they play a key role in understanding the gap in the mass function between stars and planets. However, due to their faint nature, previous searches are inevitably limited to the solar neighbourhood (20 pc). To improve our knowledge of the low mass part of the initial stellar mass function and the star formation history of the Milky Way, it is crucial to find more distant brown dwarfs. Using James Webb Space Telescope (JWST) COSMOS-Web data, this study seeks to enhance our comprehension of the physical characteristics of brown dwarfs situated at a distance of kpc scale. The exceptional sensitivity of the JWST enables the detection of brown dwarfs that are up to 100 times more distant than those discovered in the earlier all-sky infrared surveys. The large area coverage of the JWST COSMOS-Web survey allows us to find more distant brown dwarfs than earlier JWST studies with smaller area coverages. To capture prominent water absorption features around 2.7 ${\unicode{x03BC}}$m, we apply two colour criteria, $\text{F115W}-\text{F277W}+1\lt\text{F277W}-\text{F444W}$ and $\text{F277W}-\text{F444W}\gt\,0.9$. We then select point sources by CLASS_STAR, FLUX_RADIUS, and SPREAD_MODEL criteria. Faint sources are visually checked to exclude possibly extended sources. We conduct SED fitting and MCMC simulations to determine their physical properties and associated uncertainties. Our search reveals 25 T-dwarf candidates and 2 Y-dwarf candidates, more than any previous JWST brown dwarf searches. They are located from 0.3 to 4 kpc away from the Earth. The spatial number density of 900–1 050 K dwarf is $(2.0\pm0.9) \times10^{-6}\text{ pc}^{-3}$, 1 050–1 200 K dwarf is $(1.2\pm0.7) \times10^{-6}\text{ pc}^{-3}$, and 1 200–1 350 K dwarf is $(4.4\pm1.3) \times10^{-6}\text{ pc}^{-3}$. The cumulative number count of our brown dwarf candidates is consistent with the prediction from a standard double exponential model. Three of our brown dwarf candidates were detected by HST, with transverse velocities $12\pm5$, $12\pm4$, and $17\pm6$ km s$^{-1}$. Along with earlier studies, the JWST has opened a new window of brown dwarf research in the Milky Way thick disk and halo.
The Central Asian Orogenic Belt is the world’s largest accretionary orogenic belt, associated with the closure of the Paleo-Asian Ocean (PAO). However, the final closure timing of the eastern PAO remains contentious. The Permian-Triassic sedimentary sequences in the Wangqing area along the Changchun-Yanji suture zone offer important clues into this final closure. New data on petrology, whole-rock geochemistry, zircon U-Pb geochronology and zircon Hf isotopes of sedimentary rocks from the Miaoling Formation and Kedao Group in Wangqing area provide new insights into the final closure of the eastern end of the PAO. The maximum deposition ages of the Miaoling Formation and Kedao Group have been constrained to the Late Permian (ca. 253 Ma) and early Middle Triassic (ca. 243 Ma), respectively. These sedimentary rocks exhibit similar geochemical characteristics, showing low textural and compositional maturities, implying short sediment transport, with all detrital zircons suggesting their origins from felsic igneous rocks. The εHf(t) values of the Miaoling Formation range from −6.09 to 12.43 and from −2.20 to 7.59 for the Kedao Group, implying these rocks originated from NE China. Considering our new data along with previously published data, we propose that a reduced remnant ocean remained along the Changchun-Yanji suture zone in the early Middle Triassic (ca. 243 Ma), suggesting the final closure of the eastern PAO likely occurred between the latest Middle Triassic and early Late Triassic.
This research aimed to develop biomarkers for estimating ammonia (NH3) emissions from dairy cattle manure over a 15-day in vitro incubation system. To generate different levels of NH3 emissions, the experiment utilized four manure experimental groups: 1 urinary nitrogen (U) to 1 faecal nitrogen (F) ratio (CT), 2 U to 1 F ratio (2U1F), and CT and 2U1F with lignite application (CT + L and 2U1F + L, respectively). The addition of lignite to ruminant manure aimed to enhance environmental sustainability through its beneficial properties. Three biomarkers, nitrogen (N) isotopic fractionation (δ15N), N: potassium (K) ratio, and N: phosphorus (P) ratio, were investigated. Manure δ15N increased linearly when NH3 emission increased in CT and 2U1F groups (R2 = 0.79 and 0.90, respectively; P ≤ 0.001), while manure N: P decreased when NH3 emission increased in CT + L and 2U1F + L groups (R2 = 0.73 and 0.85, respectively; P ≤ 0.001). No useful relationship was found between N: K and NH3 emission, apart from in 2U1F group (R2 = 0.84; P ≤ 0.001). The experiment found manure δ15N and N: P are complementary biomarkers to predict NH3 emissions, from non-lignite and lignite groups, respectively.
This study aimed to understand the potassium voltage-gated channel KQT-like subfamily, member 1 gene polymorphism in a rural elderly population in a county in Guangxi and to explore the possible relationship between its gene polymorphism and blood sugar. The 6 SNP loci of blood DNA samples from 4355 individuals were typed using the imLDRTM Multiple SNP Typing Kit from Shanghai Tianhao Biotechnology Co. The data combining epidemiological information (baseline questionnaire and physical examination results) and genotyping results were statistically analyzed using GMDR0.9 software and SPSS22.0 software. A total of 4355 elderly people aged 60 years and above were surveyed in this survey, and the total abnormal rate of glucose metabolism was 16·11 % (699/4355). Among them, male:female ratio was 1:1·48; the age group of 60–69 years old accounted for the highest proportion, with 2337 people, accounting for 53·66 % (2337/4355). The results of multivariate analysis showed that usually not doing farm work (OR 1·26; 95 % CI 1·06, 1·50), TAG ≥ 1·70 mmol/l (OR 1·19; 95 % CI 1·11, 1·27), hyperuricaemia (OR 1·034; 95 % CI 1·01, 1·66) and BMI ≥ 24 kg/m2 (OR 1·06; 95 % CI 1·03, 1·09) may be risk factors for abnormal glucose metabolism. Among all participants, rs151290 locus AA genotype, A allele carriers (AA+AC) were 0.70 times more likely (0.54 to 0.91) and 0.82 times more likely (0.70 to 0.97) to develop abnormal glucose metabolism than CC genotype carriers, respectively. Carriers of the T allele at the rs2237892 locus (CT+TT) were 0.85 times more likely to have abnormal glucose metabolism than carriers of the CC genotype (0.72 to 0.99); rs2237897 locus CT gene. The possibility of abnormal glucose metabolism in the carriers of CC genotype, TT genotype and T allele (CT + TT) is 0·79 times (0·67–0·94), 0·74 times (0·55–0·99) and 0·78 times (0·66, 0·92). The results of multifactor dimensionality reduction showed that the optimal interaction model was a three-factor model consisting of farm work, TAG and rs2237897. The best model dendrogram found that the interaction between TAG and rs2237897 had the strongest effect on fasting blood glucose in the elderly in rural areas, and they were mutually antagonistic. Environment–gene interaction is an important factor affecting abnormal glucose metabolism in the elderly of a county in Hechi City, Guangxi.
Research evidence has established an association of obsessive-compulsive disorder (OCD) with suicidal thoughts and suicide attempts. However, further investigation is required to determine whether individuals with OCD have higher risk of death by suicide compared with those without OCD.
Methods
Of the entire Taiwanese population, between 2003 and 2017, 56,977 individuals with OCD were identified; they were then matched at a 1:4 ratio with 227,908 non-OCD individuals on the basis of their birth year and sex. Suicide mortality was assessed between 2003 and 2017 for both groups. Time-dependent Cox regression models were used to investigate the difference in suicide risk between individuals with versus without OCD.
Results
After adjustment for major psychiatric comorbidities (i.e., schizophrenia, bipolar disorder and major depressive disorder), the OCD group had higher risk of suicide (hazard ratio: 1.97, 95% confidence interval: 1.57–2.48) during the follow-up compared with the comparison group. Furthermore, OCD severity, as indicated by psychiatric hospitalizations due to OCD, was positively correlated with suicide risk.
Conclusions
Regardless of the existence of major psychiatric comorbidities, OCD was found to be an independent risk factor for death by suicide. A suicide prevention program specific to individuals with OCD may be developed in clinical practice in the future.
In this paper, an unmanned bicycle (UB) with a reaction wheel is designed, and a second-order mathematical model with uncertainty is established. In order to achieve excellent balancing performance of the UB system, an adaptive controller is designed, which is composed of nominal feedback control, compensating control using extreme learning machine observer and reaching control via integral terminal sliding mode (ITSM) and barrier function (BF)-based adaptive law. Owing to the features of BF-based ITSM (BFITSM), not only any uncertainty or disturbance upper bound is not needed any longer but also the finite-time convergence of the closed-loop system can be ensured with a predefined error bound. Moreover, the BF-based control gain can be adaptively adjusted according to the update of the lumped uncertainty such that the overestimation is removed. The stability analysis of the closed-loop system is given according to Lyapunov theory. Comparable experimental results on an actual UB are carried out to validate the superior balancing performance of the proposed controller.
Major depressive disorder (MDD) is a prevalent and disabling condition. Approximately 30-50% of patients do not respond to first-line medication or psychotherapy. Therefore, several studies have investigated the predictive potential of pretreatment severity rating or neuroimaging features to guide clinical approaches that can speed optimal treatment selection.
Objectives
To evaluate the performance of 1) severity ratings (scores of Hamilton Depression/Anxiety Scale, illness duration, and sleep quality, etc.) and demographic characteristic and 2) brain magnetic resonance imaging (MRI) features in predicting treatment outcomes for MDD. Second, to assess performance variations among varied modalities and interventions in MRI studies.
Methods
We searched studies in PubMed, Embase, Web of Science, and Science Direct databases before March 22, 2023. We extracted a confusion matrix for prediction in each study. Separate meta-analyses were performed for clinical and MRI studies. The logarithm of diagnostic odds ratio [log(DOR)], sensitivity, and specificity were conducted using Reitsma’s random effect model. The area under curve (AUC) of summary receiver operating characteristic (SROC) curve was calculated.
Subgroup analyses were conducted in MRI studies based on modalities: resting-state functional MRI (rsfMRI), task-based fMRI (tbfMRI), and structural MRI (sMRI), and interventions: antidepressant (including selective serotonin reuptake inhibitors [SSRI]) and electroconvulsive therapy (ECT). Meta-regression was conducted 1) between clinical and MRI studies and 2) among modality or intervention subgroups in MRI studies.
Results
We included ten studies used clinical features covering 6494 patients, yielded a log(DOR) of 1.42, AUC of 0.71, sensitivity of 0.61, and specificity of 0.74. In terms of MRI, 44 studies with 2623 patients were included, revealing an overall log(DOR) of 2.53. The AUC, sensitivity, and specificity were 0.89, 0.78, and 0.75.
Studies using MRI features had a higher sensitivity (0.89 vs. 0.61) in predicting treatment outcomes than clinical features (P < 0.001). RsfMRI had higher specificity (0.79 vs. 0.69) than tbfMRI subgroup (P = 0.01). No significant differences were found between sMRI and other modalities, nor between antidepressants (SSRIs and others) and ECT. Antidepressant studies primarily identified predictive imaging features in limbic and default mode networks, while ECT mainly focused on limbic network.
Conclusions
Our findings suggest a robust promise for pretreatment brain MRI features in predicting treatment outcomes in MDD, offering higher accuracy than clinical studies. While tasks in tbfMRI studies differed, those studies overall had less predictive utility than rsfMRI data. For MRI studies, overlapping but distinct network level measures predicted outcomes for antidepressants and ECT.
Obsessive-compulsive disorder (OCD) is a common psychiatric disorder. It is considered that dysregulation of cytokine levels is related to the pathophysiological mechanism of OCD. However, the results of previous studies on cytokine levels in OCD are inconsistent.
Objectives
To perform a meta-analysis assessing cytokine levels in peripheral blood of OCD patients.
Methods
We searched in PubMed, Web of Science, and Embase from inception to March 31, 2023 for eligible studies. We conducted multivariate meta-analysis in combined proinflammatory cytokines (interleukin-6 [IL-6], IL-1β, IL-2, tumor necrosis factor-α [TNF-α], and interferon-γ [IFN-γ]) and combined anti-inflammatory cytokines (IL-10 and IL-4) respectively, and calculated the same meta-analysis in each cytokine. We also performed sensitivity analysis and publication bias tests, as well as subgroup analysis (i.e. different age groups, varied cytokine measurement methods, medication treated or naïve, and presence of psychiatric comorbidities) and meta-regression analysis (variables including patients’ sex ratio, age, age at symptom onset, illness duration, scores of Y-BOCS, family history of psychiatric disorders, and BMI).
Results
17 original studies (13, 13, 10, 5, 4, 3, 2 studies for IL-6, TNF-α, IL-1β, IL-10, IL-2, IL-4, and IFN-γ, respectively), 573 patients (mean age, 25.2; 50.3% female) and 498 healthy controls (HC; mean age, 25.3; 51.4% female) were included. The results showed that the levels of combined pro- or anti-inflammatory cytokines and each signle cytokine were not significantly different between OCD patients and HC (all P>0.05), with significant heterogeneities in all analyses (I2 from 79.1% to 91.7%). We did not find between-group differences in cytokine levels in all subgroup analyses. Meta-regression analysis suggested that age at onset (P=0.0003) and family history (P=0.0062) might be the source of heterogeneity in TNF-α level. Sensitivity analysis confirmed that all results were stable, except for IL-4 where different cytokine measurement methods may be the contributing factor. Egger test did not find publication bias.
Conclusions
Our study showed no difference in cytokine levels between OCD patients and HC, but age at onset and family history may affect TNF-α level. Confounding factors such as age at onset, family history, and cytokine measurement methods should be controlled in future studies to further explore the immune mechanism of OCD.
There’s large heterogeneity present in major depressive disorder (MDD) and controversial evidence on alterations of brain functional connectivity (FC), making it hard to elucidate the neurobiological basis of MDD. Subtyping is one promising solution to characterize this heterogeneity.
Objectives
To identify neurophysiological subtypes of MDD based on FC derived from resting-state functional magnetic resonance imaging using large multisite data and investigate the differences in genetic mechanisms and neurotransmitter basis of FC alterations, and the differences of FC-related cognition between each subtype.
Methods
Consensus clustering of FC patterns was applied to a population of 829 MDD patients from REST-Meta-MDD database after data cleaning and image quality control. Gene transcriptomic data derived from Allen Human Brain Atlas and neurotransmitter receptor/transporter density data acquired by using neuromap toolbox were used to characterize the molecular mechanism underlying each FC-based subtype by identifying the gene set and neurotransmitters/transporters showing high spatial similarity with the profiles of FC alterations between each subtype and 770 healthy controls. The FC-related cognition in each subtype was also selected by lasso regression.
Results
Two stable neurophysiological MDD subtypes were found and labeled as hypoconnectivity (n=527) and hyperconnectivity (n=299) characterized by the FC differences in each subtype relative to controls, respectively. The two subtypes did not differ in age, sex, and scores of Hamilton Depression/Anxiety Scale.
The genes related to FC alterations were enriched in ion transmembrane transport, synaptic transmission/organization, axon development, and regulation of neurotransmitter level for both subtypes, but specifically enriched in glial cell differentiation for hypoconnectivity subtype, while enriched in regulation of presynaptic membrane and regulation of neuron differentiation for hyperconnectivity subtype.
FC alterations were associated with the density of 5-HT2a receptor in both subtypes. For hyperconnectivity subtype, FC alterations were also correlated with the density of norepinephrine transporter, glutamate receptor, GABA receptor, 5-HT1b receptor, and cannabinoid receptor.
Both subtypes showed correlations between FC and categorization, motor inhibition, and localization. The FC in hypoconnectivity subtype correlated with response inhibition, selective attention, face recognition, sleep, empathy, expertise, uncertainty, and anticipation, while that was related to inference, speech perception, and reward anticipation in hyperconnectivity subtype.
Conclusions
Our findings suggested the presence of two neuroimaging subtypes of MDD characterized by hypo or hyper-connectivity. The two subtypes had both shared and distinct genetic mechanisms, neurotransmitter receptor/transporter profiles, and cognition types.
Understanding settling motion of coral grains is important in terms of protection of coral reef systems and resotoration of the associated ecosystems. In this paper, a series of laboratory experiments was conducted to investigate the settling motion, using optical microscopy to measure shape parameters of coral grains and the particle-filtering-based object tracking to reconstruct the three-dimensional trajectory. Three characteristic descent regimes, namely, tumbling, chaotic and fluttering, are classified based on the three-dimensional trajectory, the spiral radius variation and the velocity spectrum. It is demonstrated that if one randomly picks up one coral grain, then the probabilities of occurrence of the three regimes are approximately $26\,\%$, $42\,\%$ and $32\,\%$, respectively. We have shown that first, the dimensionless settling velocity generally increases with the non-dimensional diameter and Corey shape factor and second, the drag coefficient generally decreases with the Reynolds number and Corey shape factor. Based on this, the applicability of existing models on predicting settling velocity and drag coefficient for coral grains is demonstrated further. Finally, we have proposed extended models for predicting the settling velocity. This study contributes to better understanding of settling motion and improves our predictive capacity of settling velocity for coral grains with complex geometry.
Insects flip their wings around each stroke reversal and may enhance lift in the early stage of a half-stroke. The possible lift-enhancing mechanism of this rapid wing rotation and its strong connection with wake vortices are still underexplored, especially when unsteady leading-edge vortex (LEV) behaviours occur. Here, we numerically studied the lift generation and underlying vorticity dynamics during the rapid rotation of a low aspect ratio flapping wing at a Reynolds number (${\textit {Re}}$) of 1500. Our findings prove that when the outboard LEV breaks down, an advanced rotation can still enhance the lift in the early stage of a half-stroke, which originates from an interaction with the breakdown vortex in the outboard region. This interaction, named the breakdown-vortex jet mechanism, results in a jet and thus a higher pressure on the upwind surface, including a stronger wingtip suction force on the leeward surface. Although the stable LEV within the mid-span retains its growth and location during an advanced rotation, it can be detrimental to lift enhancement as it moves underneath the wing. Therefore, for a flapping wing at ${\textit {Re}}\sim 10^3$, the interactions with stable and breakdown leading-edge vortices lead to the single-vortex suction and breakdown-vortex jet mechanisms, respectively. In other words, the contribution of wing–wake interaction depends on the spanwise location. The current work also implies the importance of wing kinematics to this wing–wake interaction in flapping wings, and provides an alternative perspective for understanding this complex flow phenomenon at ${\textit {Re}}\sim 10^3$.
Two 10-day in vitro experiments were conducted to investigate the relationship between nitrogen (N) isotope discrimination (δ15N) and ammonia (NH3) emissions from sheep manure. In Exp. 1, three different manure mixtures were set up: control (C); C mixed with lignite (C + L); and grape marc (GM), with 5, 4 and 5 replications, respectively. For C, urine and faeces were collected from sheep fed a diet of 550 g lucerne hay/kg, 400 g barley grain/kg and 50 g faba bean/kg; for C + L, urine and faeces were collected from sheep fed the C diet and 100 g ground lignite added to each incubation system at the start of the experiment; for GM, urine and faeces were collected from sheep fed a diet consisting of C diet with 200 g/kg of the diet replaced with GM. In Exp. 2, three different urine-faeces mixtures were set up: 2U:1F, 1.4U:1F and 1U:1F with urine to faeces ratios of 2:1, 1.4:1 and 1:1, respectively, each with 5 replications. Lignite in C + L led to significantly lower cumulative manure-N loss by 81 and 68% in comparison with C and GM groups, respectively (P = 0.001). Cumulative emitted manure NH3-N was lower in C + L than C and GM groups by 35 and 36%, respectively (P = 0.020). Emitted manure NH3-N was higher in 2U:1F compared to 1.4U:1F and 1U:1F by 18 and 26%, respectively (P < 0.001). This confirms the relationship between manure δ15N and cumulative NH3-N loss reported by earlier studies, which may be useful for estimating NH3 losses.