We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A novel entomopathogenic nematode (EPN) species, Steinernema tarimense n. sp., was isolated from soil samples collected in a Populus euphratica forest located in Yuli County within the Tarim Basin of Xinjiang, China. Integrated morphological and molecular analyses consistently place S. tarimense n. sp. within the ‘kushidai-clade’. The infective juvenile (IJ) of new species is characterized by a body length of 674–1010 μm, excretory pore located 53–80 μm from anterior end, nerve ring positioned 85–131 μm from anterior end, pharynx base situated 111–162 μm from anterior end, a tail length of 41–56 μm, and the ratios D% = 42.0–66.6, E% = 116.2–184.4, and H% = 25.5–45.1. The first-generation male of the new species is characterized by a curved spicule length of 61–89 μm, gubernaculum length of 41–58 μm, and ratios D% = 36.8–66.2, SW% = 117.0–206.1, and GS% = 54.8–82.0. Additionally, the tail of first-generation female is conoid with a minute mucron. Phylogenetic analyses of ITS, 28S, and mt12S sequences demonstrated that the three isolates of S. tarimense n. sp. are conspecific and form a sister clade to members of the ‘kushidai-clade’ including S. akhursti, S. anantnagense, S. kushidai, and S. populi. Notably, the IJs of the new species exhibited faster development at 25°C compared to other Steinernema species. This represents the first described of an indigenous EPN species from Xinjiang, suggesting its potential as a novel biocontrol agent against local pests.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
This is a proof-of-concept study to compare the effects of a 2-week program of “Remind-to-move” (RTM) treatment using closed-loop and open-loop wearables for hemiparetic upper extremity in patients with chronic stroke in the community. The RTM open-loop wearable device has been proven in our previous studies to be useful to address the learned nonuse phenomenon of the hemiparetic upper extremity. A closed-loop RTM wearable device, which emits reminding cues according to actual arm use, was developed in this study. A convenience sample of 16 participants with chronic unilateral stroke recruited in the community was engaged in repetitive upper extremity task-specific practice for 2 weeks while wearing either a closed-loop or an open-loop ambulatory RTM wearable device on their affected hand for 3 hrs a day. Evaluations were conducted at pre-/post-intervention and follow-up after 4 weeks using upper extremity motor performance behavioral measures, actual arm use questionnaire, and the kinematic data obtained from the device. Results showed that both open-loop and closed-loop training groups achieved significant gains in all measures at posttest and follow-up evaluations. The closed-loop group showed a more significant improvement in movement frequency, hand functions, and actual arm use than did the open-loop group. Our findings supported the use of closed-loop wearables, which showed greater effects in terms of promoting the hand use of the hemiparetic upper extremity than open-loop wearables among patients with chronic stroke.
Characterizing the structure and composition of clay minerals on the surface of Mars is important for reconstructing past aqueous processes and environments. Data from the CheMin X-ray diffraction (XRD) instrument on the Mars Science Laboratory Curiosity rover demonstrate a ubiquitous presence of collapsed smectite (basal spacing of 10 Å) in ~3.6-billion-year-old lacustrine mudstone in Gale crater, except for expanded smectite (basal spacing of 13.5 Å) at the base of the stratigraphic section in a location called Yellowknife Bay. Hypotheses to explain expanded smectite include partial chloritization by Mg(OH)2 or solvation-shell H2O molecules associated with interlayer Mg2+. The objective of this work is to test these hypotheses by measuring partially chloritized and Mg-saturated smectite using laboratory instruments that are analogous to those on Mars rovers and orbiters. This work presents Mars-analog XRD, evolved gas analysis (EGA), and visible/shortwave-infrared (VSWIR) data from three smectite standards that were Mg-saturated and partially and fully chloritized with Mg(OH)2. Laboratory data are compared with XRD and EGA data collected from Yellowknife Bay by the Curiosity rover to examine whether the expanded smectite can be explained by partial chloritization and what this implies about the diagenetic history of Gale crater. Spectral signatures of partial chloritization by hydroxy-Mg are investigated that may allow the identification of partially chloritized smectite in Martian VSWIR reflectance spectra collected from orbit or in situ by the SuperCam instrument suite on the Mars 2020 Perseverance rover. Laboratory XRD and EGA data of partially chloritized saponite are consistent with data collected from Curiosity. The presence of partially chloritized (with Mg(OH)2) saponite in Gale crater suggests brief interactions between diagenetic alkaline Mg2+-bearing fluids and some of the mudstone exposed at Yellowknife Bay, but not in other parts of the stratigraphic section. The location of Yellowknife Bay at the base of the stratigraphic section may explain the presence of alkaline Mg2+-bearing fluids here but not in other areas of Gale crater investigated by Curiosity. Early diagenetic fluids may have had a sufficiently long residence time in a closed system to equilibrate with basaltic minerals, creating an elevated pH, whereas diagenetic environments higher in the section may have been in an open system, therefore preventing fluid pH from becoming alkaline.
Background: Epilepsy affects approximately 3% of Canadian children. Despite the availability of standardized seizure abortion guidelines, many patients require personalized treatment plans due to genetic factors, medical contraindications, or a history of adverse medication reactions. This study aims to create and evaluate personalized Acute Seizure Action Plans (ASAPs) for epilepsy patients at the Children’s Hospital of Eastern Ontario (CHEO). Methods: Using a Plan-Do-Check-Act (PDCA) framework, we developed electronic ASAPs for integration into participants’ electronic medical records. The effectiveness and user satisfaction of these ASAPs will be evaluated through electronic surveys administered to Neurology physicians, Emergency Department (ED) physicians, and patient participants at baseline and six months post-implementation. Results: Baseline surveys were administered to ED physicians with a 70% response rate, indicating only 43% satisfaction with current generic seizure treatment practice. One hundred percent of respondents expressed interest in using an ASAP, citing challenges in selecting the appropriate anti-seizure medications and determining when to adjust treatment as priorities. These findings underscore the need for ASAP implementation. Conclusions: ED providers desire improved seizure action plans. ASAP implementation is expected to enhance emergency seizure management, reduce adverse events among epilepsy patients, and increase satisfaction of seizure management among all participants.
Background: Neck vessel imaging is often performed in hyperacute stroke to allow neurointerventionalists to estimate access complexity. This study aimed to assess clinician agreement on catheterization strategies based on imaging in these scenarios. Methods: An electronic portfolio of 60 patients with acute ischemic stroke was sent to 53 clinicians. Respondents were asked: (1) the difficulty of catheterization through femoral access with a regular Vertebral catheter, (2) whether to use a Simmons or reverse-curve catheter initially, and (3) whether to consider an alternative access site. Agreement was assessed using Fleiss’ Kappa statistics. Results: Twenty-two respondents (7 neurologists, 15 neuroradiologists) completed the survey. Overall there was slight interrater agreement (κ=0.17, 95% CI: 0.10–0.25). Clinicians with >50 cases annually had better agreement (κ=0.22) for all questions than those with fewer cases (κ=0.07). Agreement did not significantly differ by imaging modality: CTA (κ=0.18) and MRA (κ=0.14). In 40/59 cases (67.80%), at least 25% of clinicians disagreed on whether to use a Simmons or reverse-curve catheter initially. Conclusions: Agreement on catheterization strategies remains fair at best. Our results suggest that visual assessment of pre-procedural vessels imaging is not reliable for the estimation of endovascular access complexity.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.
It remains unclear which individuals with subthreshold depression benefit most from psychological intervention, and what long-term effects this has on symptom deterioration, response and remission.
Aims
To synthesise psychological intervention benefits in adults with subthreshold depression up to 2 years, and explore participant-level effect-modifiers.
Method
Randomised trials comparing psychological intervention with inactive control were identified via systematic search. Authors were contacted to obtain individual participant data (IPD), analysed using Bayesian one-stage meta-analysis. Treatment–covariate interactions were added to examine moderators. Hierarchical-additive models were used to explore treatment benefits conditional on baseline Patient Health Questionnaire 9 (PHQ-9) values.
Results
IPD of 10 671 individuals (50 studies) could be included. We found significant effects on depressive symptom severity up to 12 months (standardised mean-difference [s.m.d.] = −0.48 to −0.27). Effects could not be ascertained up to 24 months (s.m.d. = −0.18). Similar findings emerged for 50% symptom reduction (relative risk = 1.27–2.79), reliable improvement (relative risk = 1.38–3.17), deterioration (relative risk = 0.67–0.54) and close-to-symptom-free status (relative risk = 1.41–2.80). Among participant-level moderators, only initial depression and anxiety severity were highly credible (P > 0.99). Predicted treatment benefits decreased with lower symptom severity but remained minimally important even for very mild symptoms (s.m.d. = −0.33 for PHQ-9 = 5).
Conclusions
Psychological intervention reduces the symptom burden in individuals with subthreshold depression up to 1 year, and protects against symptom deterioration. Benefits up to 2 years are less certain. We find strong support for intervention in subthreshold depression, particularly with PHQ-9 scores ≥ 10. For very mild symptoms, scalable treatments could be an attractive option.
Florpyrauxifen-benzyl is a postemergence rice herbicide that has reduced rice yield in some situations, and producers are concerned that the impact could be even greater with low rice seeding densities. Therefore, research was conducted in Stoneville, MS, from 2019 to 2021, to evaluate the effect of florpyrauxifen-benzyl on rice yield when a hybrid was seeded at reduced densities. Rice cultivar FullPage RT 7521 FP was seeded at 10, 17, 24, 30, and 37 kg ha−1. At the 4-leaf to 1-tiller growth stage, florpyrauxifen-benzyl was applied at 0 or 58 g ai ha−1. Rice injury following application of florpyrauxifen-benzyl was ≤8% across all seeding rates and evaluation intervals. Application of florpyrauxifen-benzyl reduced plant heights by 14% to all seeding rates but did not result in delayed rice maturity. When florpyrauxifen-benzyl was not applied to rice that was seeded at 10 and 17 kg ha−1 seeding rates, rice matured slower than when it was seeded at 24, 30, and 37 kg ha−1. When florpyrauxifen-benzyl was applied, rough rice grain yields were reduced by at the 17 and 37 kg ha−1 seeding rates, but not at any other seeding rate. In conclusion, application of florpyrauxifen-benzyl at a 2× rate can cause a loss of yield resulting from variation in rice densities.
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
Diagnosis in psychiatry faces familiar challenges. Validity and utility remain elusive, and confusion regarding the fluid and arbitrary border between mental health and illness is increasing. The mainstream strategy has been conservative and iterative, retaining current nosology until something better emerges. However, this has led to stagnation. New conceptual frameworks are urgently required to catalyze a genuine paradigm shift.
Methods
We outline candidate strategies that could pave the way for such a paradigm shift. These include the Research Domain Criteria (RDoC), the Hierarchical Taxonomy of Psychopathology (HiTOP), and Clinical Staging, which all promote a blend of dimensional and categorical approaches.
Results
These alternative still heuristic transdiagnostic models provide varying levels of clinical and research utility. RDoC was intended to provide a framework to reorient research beyond the constraints of DSM. HiTOP began as a nosology derived from statistical methods and is now pursuing clinical utility. Clinical Staging aims to both expand the scope and refine the utility of diagnosis by the inclusion of the dimension of timing. None is yet fit for purpose. Yet they are relatively complementary, and it may be possible for them to operate as an ecosystem. Time will tell whether they have the capacity singly or jointly to deliver a paradigm shift.
Conclusions
Several heuristic models have been developed that separately or synergistically build infrastructure to enable new transdiagnostic research to define the structure, development, and mechanisms of mental disorders, to guide treatment and better meet the needs of patients, policymakers, and society.
Negative symptoms are a key feature of several psychiatric disorders. Difficulty identifying common neurobiological mechanisms that cut across diagnostic boundaries might result from equifinality (i.e., multiple mechanistic pathways to the same clinical profile), both within and across disorders. This study used a data-driven approach to identify unique subgroups of participants with distinct reward processing profiles to determine which profiles predicted negative symptoms.
Methods
Participants were a transdiagnostic sample of youth from a multisite study of psychosis risk, including 110 individuals at clinical high-risk for psychosis (CHR; meeting psychosis-risk syndrome criteria), 88 help-seeking participants who failed to meet CHR criteria and/or who presented with other psychiatric diagnoses, and a reference group of 66 healthy controls. Participants completed clinical interviews and behavioral tasks assessing four reward processing constructs indexed by the RDoC Positive Valence Systems: hedonic reactivity, reinforcement learning, value representation, and effort–cost computation.
Results
k-means cluster analysis of clinical participants identified three subgroups with distinct reward processing profiles, primarily characterized by: a value representation deficit (54%), a generalized reward processing deficit (17%), and a hedonic reactivity deficit (29%). Clusters did not differ in rates of clinical group membership or psychiatric diagnoses. Elevated negative symptoms were only present in the generalized deficit cluster, which also displayed greater functional impairment and higher psychosis conversion probability scores.
Conclusions
Contrary to the equifinality hypothesis, results suggested one global reward processing deficit pathway to negative symptoms independent of diagnostic classification. Assessment of reward processing profiles may have utility for individualized clinical prediction and treatment.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Autism spectrum disorder (ASD) is defined by the American Psychiatric Association as persistent deficits in social communication and interactions and restricted, repetitive patterns of behavior, interests, or activities. There are many potential etiological causes for ASD. In the United States, the combined prevalence of ASD per 1,000 children was 23 in 2018. The American Academy of Pediatrics (AAP) recommends screening specifically for ASD during regular doctor visits at 18 and 24 months to ensure systematic monitoring for early signs of ASD. Most reported concerns from parents relate to abnormal childhood developmental trajectory and history of unusual behaviors, with variability in ages when features suggestive of ASD are most noticeable. Behavioral interventions for ASD focus on minimizing the effects of developmental delays and maximizing speech/language, motor, social-emotional, and cognitive skills. Medications can be used to target comorbid conditions or problematic behaviors that interfere with progress or pose safety concerns. The financial burden on families of children with ASD is correlated with the existing societal financial safety net. Poorer outcomes are expected when the family carries a substantial share of the cost to support the development of children with ASD, especially in lower-income households.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Clastic sedimentary systems and their characteristics are assumed not to have been modified by carbonate bioclastic grains until the Phanerozoic. Here, we show that the presence of carbonate bioclasts produced by disintegrated biomineralizing metazoans modified fine-grained siliciclastic facies in the Late Ediacaran Tamengo Formation, Brazil, ca. 555–542 Ma. The analysis of both polished sections and thin sections shows that sand-sized carbonate bioclasts (< 2 mm) derived from the Ediacaran metazoan Corumbella created diverse sedimentary features later found in the Phanerozoic record, such as bioclastic-rich horizontal and low-angle cross-laminations, erosive pods and lenses, bioclastic syneresis cracks, ripples preserved by bioclastic caps, microbial lamination eroded and filled with bioclasts, and entrapped bioclasts within microbial mats. These sedimentary features would have hardly been recorded in fine siliciclastic facies without the sand-sized bioclasts. Based on these features, together with other sedimentary evidence, Corumbella depositional settings in the Tamengo Fm. are reinterpreted as mid-ramp, subtidal settings. The multi-component organization of the skeleton of Corumbella favoured disarticulation to yield a sand-sized bioclast, so in turn creating a new complexity to shallow marine clastic settings typical of Phanerozoic marine depositional systems.
Understanding the physics of electromagnetic pulse (EMP) emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable sources of radiation at high repetition rates. We present a theoretical model of plasma formation and electrostatic charging when high-power lasers are focused inside gases. The model can be used to estimate the amplitude of gigahertz EMPs produced by the laser and the extent of damage to the gas jet nozzle. Looking at a range of laser and target properties relevant to existing high-power laser systems, we find that EMP fields of tens to hundreds of kV/m can be generated several metres from the gas jet. Model predictions are compared with measurements of EMPs, plasma formation and nozzle damage from two experiments on the VEGA-3 laser and one experiment on the Vulcan Petawatt laser.