We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This meta-analysis assesses the relationship between vitamin D supplementation and incidence of major adverse cardiovascular events (MACEs). Pubmed, Web of science, Ovid, Cochrane Library and Clinical Trials were used to systematically search from their inception until July 2024. Hazard ratios (HR) and 95% confidence intervals (95%CI) were employed to assess the association between vitamin D supplementation and MACEs. This analysis included 5 randomized controlled trials (RCTs). Pooled results showed no significant difference in the incidence of MACEs (HR: 0.96; p=0.77), expanded MACEs (HR: 0.96; p=0.77) between the vitamin D intervention group and the control group. Further, the vitamin D intervention group had a lower incidence of myocardial infarction (MI), but the difference was not statistically significant (HR: 0.88, 95%CI: 0.77-1.01; p=0.061); nevertheless, vitamin D supplementation had no effect on the reduced incidence of stroke (p=0.675) or cardiovascular death (p=0.422). Among males (p=0.109) and females (p=0.468), vitamin D supplementation had no effect on the reduced incidence of MACEs. For participants with a body mass index (BMI)<25 kg/m2, the difference was not statistically significant (p=0.782); notably, the vitamin D intervention group had a lower incidence of MACEs for those with BMI≥25 kg/m2 (HR: 0.91, 95%CI: 0.83-1.00; p=0.055). Vitamin D supplementation did not significantly contribute to the risk reduction of MACEs, stroke and cardiovascular death in the general population, but may be helpful for MI. Notably, effect of vitamin D supplementation for MACEs was influenced by BMI. Overweight/obese people should be advised to take vitamin D to reduce the incidence of MACEs.
Megacities around the world are increasingly confronted with conservation and restoration bottlenecks due to the competing demands of urban expansion and environmental conservation. This study investigates conservation prioritization strategies for balancing biodiversity protection, ecosystem service (ES) supply and landscape connectivity in rapidly urbanizing Beijing. By employing spatially explicit modelling and prioritization scenario techniques, we identify spatially heterogeneous priority zones. We demonstrate that high-value areas for ES supply, particularly carbon storage and water regulation, concentrate primarily in Beijing’s north-western mountainous regions, covering c. 62% of the city’s area. Conversely, critical habitats for threatened species and key connectivity corridors are dispersed, with 22.89% of critical habitats located within urban built-up areas. Gap analysis reveals limited alignment between Beijing’s current ecological security patterns, with only 9.6% coverage of the identified top 10% conservation priority zones, especially within the metropolitan core. The study underscores significant trade-offs among different ecological objectives and multi-criteria conservation strategies. We propose an optimized conservation framework based on zonation analysis to guide targeted landscape planning decisions. This approach provides actionable insights for urban policymakers to achieve comprehensive sustainability, emphasizing the importance of protecting critical ecological areas in both urban and rural landscapes amid ongoing urban expansion.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
We presented an attosecond-precision timing detector based on linear optics. The minimum measurement floor is 1×10–10 fs2/Hz with only 1 mW input optical power. With this novel technique, the residual dispersion of a 5.2 km fiber link is characterized and precisely compensated. Finally, a comprehensive feedback model has been developed to analyze the noise coupling in a long-distance link stabilization system. The simulation results demonstrate an out-of-loop jitter of merely 359 as, integrated at [1 Hz, 1 MHz], at 1 mW input power per photodetector of our timing detector. Remarkably, the system is capable of maintaining sub-femtosecond precision even at optical power levels as low as 240 nW (for a 5.2 km link length), or link lengths as long as 20 km (with 1 μW optical power), respectively.
To summarise the characteristics and postoperative outcomes in paediatric patients with coronary sinus septal defect.
Method:
This retrospective study recruited paediatric patients diagnosed with coronary sinus septal defect from the Guangdong Cardiovascular Institute between 2011 and 2023. Clinical characteristics, echocardiographic parameters, surgical procedures, and postoperative outcomes were collected from electronic health records.
Results:
Among the 68 patients, 50% were male, with a median age of 1.0 years. Four cases (5.9%) were diagnosed during the prenatal period. The proportions of patients with type I, II, III, and IV coronary sinus septal defect were 51.5%, 5.9%, 16.1%, and 26.5%, respectively. The most common coexisting cardiac anomalies were persistent left superior caval vein. Twenty-seven cases were either missed or misdiagnosed by echocardiogram, accounting for 39.7% of the overall cases, with type I being the most frequently missed diagnosis. Fifty-four patients underwent surgery, two patients received transcutaneous intervention, while the remaining patients did not undergo any surgery or intervention. At follow-up, two patients with type I coronary sinus septal defect died from multiorgan dysfunction, and one patient underwent reoperation due to narrowing of the extracardiac tunnel. The remaining patients did not experience any major events and recovered well.
Conclusion:
Paediatric patients with coronary sinus septal defect often do not exhibit specific clinical manifestations. Enhancing our understanding of the anatomic and haemodynamic characteristics of coronary sinus septal defect can improve the diagnostic accuracy of echocardiography. If diagnosis is suspected, confirmation can be obtained by cardiac CT and cardiac magnetic resonance. Accurate preoperative and intraoperative diagnosis of coronary sinus septal defect contributes to high surgical success rates and favourable treatment outcomes.
Random effects meta-analysis model is an important tool for integrating results from multiple independent studies. However, the standard model is based on the assumption of normal distributions for both random effects and within-study errors, making it susceptible to outlying studies. Although robust modeling using the t distribution is an appealing idea, the existing work, that explores the use of the t distribution only for random effects, involves complicated numerical integration and numerical optimization. In this article, a novel robust meta-analysis model using the t distribution is proposed (tMeta). The novelty is that the marginal distribution of the effect size in tMeta follows the t distribution, enabling that tMeta can simultaneously accommodate and detect outlying studies in a simple and adaptive manner. A simple and fast EM-type algorithm is developed for maximum likelihood estimation. Due to the mathematical tractability of the t distribution, tMeta frees from numerical integration and allows for efficient optimization. Experiments on real data demonstrate that tMeta is compared favorably with related competitors in situations involving mild outliers. Moreover, in the presence of gross outliers, while related competitors may fail, tMeta continues to perform consistently and robustly.
This study investigates the stability and instability of the language control network in bilinguals using longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) data. We compared the language control network of Chinese university students majoring in English with those not, using three other functional networks as controls. Results indicate that the English major group exhibits reduced stability and increased instability in the language control network compared with the non-English major group. This suggests that second language (L2) learning experience may induce adaptive neural changes. Moreover, the coexistence of stability and instability in the language control network appears less modular in the English major group, implying a more integrated response to language experience. Notably, these results were not observed in the control networks. Overall, these findings enhance the understanding of bilingual language control and the impact of L2 learning on neural plasticity.
Western Zhou Dynasty (ca. 1046–771 BC) was established soon after conquering the Shang Dynasty (ca. 1600–1046 BC) and brought about the earliest enfeoffment system in Chinese history. Yan was one of the vassal states of the same clan as Zhou. According to historical records, the capital of Yan state was located near Yan mountain, which is now known as the Liulihe site in the Fangshan District, Beijing. This study carries out the high-precision dating of two newly discovered Western Zhou Dynasty noble tombs at the Liulihe site. The man in tomb M1902 participated in the groundbreaking ceremony of Yan’s capital according to inscriptions on the bronze vessel found in this tomb. Samples of different materials, especially different parts of human skeletons from the tombs, were selected to form a sample series in chronological order. Wiggle-matching models were established in OxCal program based on the growth and development time of different teeth and bones of human skeletons. More accurate ages were acquired for the death of the individuals. The results indicate that the most probable distribution range of the death date of the individual in M1902 is about 1045–1010 BC. The radiocarbon dates of M1902 give important chronological information about the founding of Yan state, and they are very close to those of the year in which King Wu of Zhou conquered the Shang Dynasty.
Depressive disorders pose a significant global public health challenge, yet evidence on their burden remains insufficient.
Aims
To report the global, regional and national burden of depressive disorders and their attributable risk factors from 1990 to 2021.
Methods
Data from the Global Burden of Disease 2021 were analyzed for 204 countries and territories from 1990 to 2021. We explored the age-standardised incidence, prevalence and disability-adjusted life years (DALYs) of depressive disorders by age, gender and sociodemographic index.
Results
In 2021, there were 357.44 million incident cases, 332.41 million prevalent cases and 56.33 million DALYs. Age-standardised rates for incidence, prevalence and DALYs were 4333.62, 4006.82 and 681.14 per 100 000 persons, with annual declines of 0.06%, 0.03% and 0.04%. Uganda, Greenland and Lesotho had the highest prevalence, while Spain, Mexico and Uruguay showed the largest increases. Greenland and Brunei Darussalam had the highest and lowest age-standardised DALYs rates, respectively. DALYs peaked in the 55–59 age group for men and 60–64 for women, with higher rates in women. Regionally, a U-shaped association was found between the sociodemographic index and DALYs rates. Population growth was the main driver for the increase in DALYs cases. Childhood maltreatment was the leading risk factor, with intimate partner violence affecting more females and childhood sexual abuse more males.
Conclusions
Despite decreasing trends in incidence, prevalence and DALYs rates, absolute case numbers and age-standardised rates continue to increase for depressive disorders. Tackling childhood abuse and improving depressive disorder management are crucial to reducing future burdens.
Cable-guiding mechanisms (CGMs) and the stiffness characteristics directly influence the dynamic features of the cable-driven upper limb rehabilitation robot (PCUR), which will affect PCUR’s performance. This paper introduces a novel CGM design. Given the precision and movement stability considerations of the mechanism, an analytical model is developed. Using this model, we analyze the error of the CGM and derive velocity and acceleration mappings from the moving platform to the cables. Continuity of cable trajectory and tension is rigorously demonstrated. Subsequently, a mathematical model for PCUR stiffness is formulated. Utilizing MATLAB/Simscape Multibody, simulation models for the CGM and stiffness characteristics are constructed. The feasibility of the proposed CGM design is validated through simulation and experimentation, while the influence of stiffness characteristics on PCUR motion stability is comprehensively analyzed.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
To communicate successfully, listeners must decode both the literal and intended meanings of a speaker’s message. This ability is especially crucial when processing indirect replies as intended meanings can differ significantly from what was said. How native and non-native speakers differ in this ability is an open question. The present study investigated differences in the time course of indirect reply processing in native and non-native Mandarin speakers. EEG signals were recorded while participants were presented with conversations that differed in their directness. For indirect replies, native speakers exhibited a larger left anterior N400 and posterior late positive component (LPC). Conversely, non-native speakers exhibited a larger left-distributed LPC and delayed LPC. Findings support that non-native speakers exhibit delayed processing of indirect replies, potentially because of cognitive resource limitations. Findings from the present study have implications for a broad range of investigations on human communication and second language processing.
Understanding the genetic basis of porcine mental health (PMH)-related traits in intensive pig farming systems may promote genetic improvement animal welfare enhancement. However, investigations on this topic have been limited to a retrospective focus, and phenotypes have been difficult to elucidate due to an unknown genetic basis. Intensively farmed pigs, such as those of the Duroc, Landrace, and Yorkshire breeds, have undergone prolonged selection pressure in intensive farming systems. This has potentially subjected genes related to mental health in these pigs to positive selection. To identify genes undergoing positive selection under intensive farming conditions, we employed multiple selection signature detection approaches. Specifically, we integrated disease gene annotations from three human gene–disease association databases (Disease, DisGeNET, and MalaCards) to pinpoint genes potentially associated with pig mental health, revealing a total of 254 candidate genes related to PMH. In-depth functional analyses revealed that candidate PMH genes were significantly overrepresented in signaling-related pathways (e.g., the dopaminergic synapse, neuroactive ligand‒receptor interaction, and calcium signaling pathways) or Gene Ontology terms (e.g., dendritic tree and synapse). These candidate PMH genes were expressed at high levels in the porcine brain regions such as the hippocampus, amygdala, and hypothalamus, and the cell type in which they were significantly enriched was neurons in the hippocampus. Moreover, they potentially affect pork meat quality traits. Our findings make a significant contribution to elucidating the genetic basis of PMH, facilitating genetic improvements for the welfare of pigs and establishing pigs as valuable animal models for gaining insights into human psychiatric disorders.
Major psychiatric disorders (MPDs) are delineated by distinct clinical features. However, overlapping symptoms and transdiagnostic effectiveness of medications have challenged the traditional diagnostic categorisation. We investigate if there are shared and illness-specific disruptions in the regional functional efficiency (RFE) of the brain across these disorders.
Methods
We included 364 participants (118 schizophrenia [SCZ], 80 bipolar disorder [BD], 91 major depressive disorder [MDD], and 75 healthy controls [HCs]). Resting-state fMRI was used to caclulate the RFE based on the static amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality and corresponding dynamic measures indicating variability over time. We used principal component analysis to obtain static and dynamic RFE values. We conducted functional and genetic annotation and enrichment analysis based on abnormal RFE profiles.
Results
SCZ showed higher static RFE in the cortico-striatal regions and excessive variability in the cortico-limbic regions. SCZ and MDD shared lower static RFE with higher dynamic RFE in sensorimotor regions than BD and HCs. We observed association between static RFE abnormalities with reward and sensorimotor functions and dynamic RFE abnormalities with sensorimotor functions. Differential spatial expression of genes related to glutamatergic synapse and calcium/cAMP signaling was more likely in the regions with aberrant RFE.
Conclusions
SCZ shares more regions with disrupted functional integrity, especially in sensorimotor regions, with MDD rather than BD. The neural patterns of these transdiagnostic changes appear to be potentially driven by gene expression variations relating to glutamatergic synapses and calcium/cAMP signaling. The aberrant sensorimotor, cortico-striatal, and cortico-limbic integrity may collectively underlie neurobiological mechanisms of MPDs.
The high-power narrow-linewidth fiber laser has become the most widely used high-power laser source nowadays. Further breakthroughs of the output power depend on comprehensive optimization of stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and transverse mode instability (TMI). In this work, we aim to further surpass the power record of all-fiberized and narrow-linewidth fiber amplifiers with near-diffraction-limited (NDL) beam quality. SBS is suppressed by white-noise-signal modulation of a single-frequency seed. In particular, the refractive index of the large-mode-area active fiber in the main amplifier is controlled and fabricated, which could simultaneously increase the effective mode field area of the fundamental mode and the loss coefficient of higher-order modes for balancing SRS and TMI. Subsequent experimental measurements demonstrate a 7.03 kW narrow-linewidth fiber laser with a signal-to-noise ratio of 31.4 dB and beam quality factors of Mx2 = 1.26, My2 = 1.25. To the best of our knowledge, this is the highest reported power with NDL beam quality based on a directly laser-diode-pumped and all-fiberized format, especially with narrow-linewidth spectral emission.
DatalogMTL is an extension of Datalog with metric temporal operators that has found an increasing number of applications in recent years. Reasoning in DatalogMTL is, however, of high computational complexity, which makes reasoning in modern data-intensive applications challenging. In this paper we present a practical reasoning algorithm for the full DatalogMTL language, which we have implemented in a system called MeTeoR. Our approach effectively combines an optimised (but generally non-terminating) materialisation (a.k.a. forward chaining) procedure, which provides scalable behaviour, with an automata-based component that guarantees termination and completeness. To ensure favourable scalability of the materialisation component, we propose a novel seminaïve materialisation procedure for DatalogMTL enjoying the non-repetition property, which ensures that each rule instance will be applied at most once throughout its entire execution. Moreover, our materialisation procedure is enhanced with additional optimisations which further reduce the number of redundant computations performed during materialisation by disregarding rules as soon as it is certain that they cannot derive new facts in subsequent materialisation steps. Our extensive evaluation supports the practicality of our approach.
The aim was to explore whether the time-lapse imaging system can help day-3 single cleavage embryo transfer to obtain comparative clinical outcomes to day-4 or 5. The data of 1237 patients who underwent single embryo transfer from January 1, 2018, to September 30, 2020, in our reproductive medicine centre were retrospectively analysed. They were divided into the day-3 single cleavage-stage embryo transfer (SCT) group (n = 357), day-4 single morula transfer (SMT) group (n = 129) and day-5 single blastocyst transfer (SBT) group (n = 751) according to the different embryo transfer stage. The clinical and perinatal outcomes of the three groups were analysed and compared. The clinical pregnancy rates of the patients in the day-3 SCT group, day-4 SMT group and day-5 SBT group were 68.07, 70.54 and 72.04%, respectively. The live birth rates were 56.86, 61.24 and 60.99%, respectively. The monozygotic twin (MZT) rate in the day-3 SCT group was significantly lower than that in the day-5 SBT group (P = 0.049). Regarding perinatal outcomes, only the secondary sex ratio had a significant difference (P < 0.05). After age stratification, no improvement was found in the pregnancy outcomes of patients >35 years of age receiving blastocyst transfer. Our findings suggest that for patients with multiple high-quality embryos on day-3, prolonging the culture time can improve the pregnancy outcome to some extent, but it will bring risks. For centres that have established morphodynamic models, day-3 SCT can also achieve an ideal pregnancy outcome and reduce the rate of monozygotic twins and sex ratio.
Coffee is one of the most popular beverages worldwide, and there is an increasing concern of the health risk of coffee consumption in pregnancy. Preeclampsia (PE) is a serious pregnancy disease that causes elevated blood pressure and proteinuria in pregnant women and growth restriction of fetuses due to poorly developed placental vasculature. The aim of our study is to investigate the possible effect of coffee intake during pregnancy in rats with potential underlying vasculature conditions. The endothelial nitric oxide synthase inhibitor N(gamma)-nitro-L-arginine methyl ester (L-NAME) at a high dose (125 mg/kg/d) was used to induce PE in pregnant rats, which were used as the positive control group. In addition, low-dose L-NAME (10 mg/kg/d) was used to simulate the compromised placental vasculature function in pregnant rats. Coffee was given together with low-dose L-NAME to the pregnant rats from gestational day 10.5–18.5. Our results show that the pregnant rats treated with low-dose L-NAME + coffee, but not low-dose L-NAME alone, developed PE symptoms such as prominent fetal growth restriction, hypertension, and proteinuria. Therefore, our findings suggest that coffee intake during pregnancy may cause an increased risk of PE in susceptible women.
This paper proposes a novel two-layer framework based on conflict-based search and regional divisions to improve the efficiency of multi-robot path planning. The high-level layer targets the reduction of conflicts and deadlocks, while the low-level layer is responsible for actual path planning. Distinct from previous dual-level search frameworks, the novelties of this work are (1) subdivision of planning regions for each robot to decrease the number of conflicts encountered during planning; (2) consideration of the number of robots in the region during planning in the node expansion stage of A*, and (3) formal proof demonstrating the nonzero probability of the proposed method in obtaining a solution, along with providing the upper bound of the solution in a special case. Experimental comparisons with Enhanced Conflict-Based Search demonstrate that the proposed method not only reduces the number of conflicts but also achieves a computation time reduction of over 30%.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.