We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.
The correlation of stress in Silicon Carbide (SiC) crystal and frequency shift in micro- Raman spectroscopy was determined by an experimental method. We applied uniaxial stress to 4H- and 6H-SiC single crystal square bar specimen shaped with (0001) and (11-20) faces by four point bending test, under measuring the frequency shift in micro-Raman spectroscopy. The results revealed that the linearity coefficients between stress and Raman shift were -1.96 cm-1/GPa for FTO(2/4)E2 on 4H-SiC (0001) face, -2.08 cm-1/GPa for FTO(2/4)E2 on 4H-SiC (11-20) face and -2.70 cm-1/GPa for FTO(2/6)E2 on 6H-SiC (0001) face. Determination of these coefficients has made it possible to evaluate the residual stress in SiC crystal quantitatively by micro-Raman spectroscopy. We evaluated the residual stress in SiC substrate that was grown in our laboratory by utilizing the results obtained in this study. The result of estimation indicated that the SiC substrate with a diameter of 6 inch remained residual stress as low as ±15 MPa.
The aim of this study was to estimate genetic correlations between milk yield, somatic cell score (SCS), mastitis, and claw and leg disorders (CLDs) during first lactation in Holstein cows by using a threshold–linear random regression test-day model. We used daily records of milk, fat and protein yields; somatic cell count (SCC); and mastitis and CLD incidences from 46 771 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2000 and 2009. A threshold animal model for binary records (mastitis and CLDs) and linear animal model for yield traits were applied in our multiple trait analysis. For both liabilities and yield traits, additive genetic effects were used as random regression on cubic Legendre polynomials of days on milk. The highest positive genetic correlations between yields and disease incidences (0.36 for milk and mastitis, 0.56 for fat and mastitis, 0.24 for protein and mastitis, 0.32 for milk and CLD, 0.44 for fat and CLD and 0.31 for protein and CLD) were estimated at about the time of peak milk yield (36 to 65 days in milk). Selection focused on early lactation yield may therefore increase the risk of mastitis and CLDs. The positive genetic correlations of SCS with mastitis or CLD incidence imply that selection to reduce SCS in the early stages of lactation would decrease the incidence of both mastitis and CLD.
We investigated the relationships between conception rates (CRs) at first service in Japanese Holstein heifers (i.e. animals that had not yet had their first calf) and cows and their test-day (TD) milk yields. Data included records of artificial insemination (AI) for heifers and cows that had calved for the first time between 2000 and 2008 and their TD milk yields at 6 through 305 days in milk (DIM) from first through third lactations. CR was defined as a binary trait for which first AI was a failure or success. A threshold-linear animal model was applied to estimate genetic correlations between CRs of heifers or cows and TD milk yield at various lactation stages. Two-trait genetic analyses were performed for every combination of CR and TD milk yield by using the Bayesian method with Gibbs sampling. The posterior means of the heritabilities of CR were 0.031 for heifers, 0.034 for first-lactation cows and 0.028 for second-lactation cows. Heritabilities for TD milk yield increased from 0.324 to 0.433 with increasing DIM but decreased slightly after 210 DIM during first lactation. These heritabilities from the second and third lactations were higher during late stages of lactation than during early stages. Posterior means of the genetic correlations between heifer CR and all TD yields were positive (range, 0.082 to 0.287), but those between CR of cows and milk yields during first or second lactation were negative (range, −0.121 to −0.250). Therefore, during every stage of lactation, selection in the direction of increasing milk yield may reduce CR in cows. The genetic relationships between CR and lactation curve shape were quite weak, because the genetic correlations between CR and TD milk yield were constant during the lactation period.
To investigate the clinicopathological and prognostic significance of the expression of cathepsin L and its inhibitor headpin, in oral squamous cell carcinoma.
Design:
Immunohistochemical studies were performed on 56 oral squamous cell carcinoma samples. We evaluated the relationship between cathepsin L and headpin expression versus patients' clinicopathological factors and survival.
Results:
The group that was positive for cathepsin L expression tended to have positive metastatic neck lymph nodes and a poorer prognosis. Headpin expression was not related to metastasis or prognosis. Well differentiated squamous cell carcinoma had higher levels of headpin expression compared with poorly differentiated squamous cell carcinoma.
Conclusion:
Cathepsin L expression is related to the invasive and metastatic potential of oral squamous cell carcinoma.
To investigate two clusters of diarrhoea cases observed in our geriatric hospital wards, the faecal specimens were analysed. Reversed passive latex agglutination assay revealed that 63·2% and 41·7% of the faecal specimens from each cluster were positive for Clostridium perfringens enterotoxin. PCR assay revealed that 71·4% and 68·8% of C. perfringens isolates from each cluster were positive for the enterotoxin gene (cpe). These observations suggested that both the clusters were outbreaks caused by enterotoxigenic C. perfringens. Subsequent pulsed-field gel electrophoresis analysis revealed that the two outbreaks were caused by different C. perfringens isolates. However, these outbreak isolates as well as other sporadic diarrhoea isolates shared a 75-kb plasmid on which the cpe gene and the tcp locus were located. The 75-kb plasmid had horizontally spread to various C. perfringens isolates and had caused outbreaks and sporadic infections. However, the site and time of the plasmid transfer are unclear.
The Microlensing Observations in Astrophysics (MOA) is a microlensing survey conducted at Mt. John Observatory in New Zealand. We searched transiting planet candidates from the MOA-I Galactic bulge data, which have been obtained with a 61cm B&C telescope from 2000 to 2005 for a microlensing search. Although this survey data were dedicated to microlensing, they are also quite useful for searching transiting objects because of the large number of stars monitored (~7 million) and the long span of the survey (~6 years). From our analysis, we found 58 transiting planet candidates. We are planning to follow up these candidates with high-precision spectroscopic and photometric observations for further selection, toward the detection of planets by radial velocity observations.
We analyse the stability of plane Poiseuille flow with a streamwise system rotation. It is found that the instability due to two-dimensional perturbations, which sets in at the well-known critical Reynolds number, Rc = 5772.2, for the non-rotating case, is delayed as the rotation is increased from zero, showing a stabilizing effect of rotation. As the rotation is increased further, however, the laminar flow becomes most unstable to perturbations which are three-dimensional. The critical Reynolds number due to three-dimensional perturbations at this higher rotation case is many orders of magnitude less than the corresponding value due to two-dimensional perturbations. We also perform a nonlinear analysis on a bifurcating three-dimensional secondary flow. The secondary flow exhibits a spiral vortex structure propagating in the streamwise direction. It is confirmed that an antisymmetric mean flow in the spanwise direction is generated in the secondary flow.
The propagation of intense laser pulses and the generation of high-energy electrons from underdense plasmas are investigated using two-dimensional particle-in-cell simulations. It is shown that quasi-monoenergetic electron beams are generated in the regime where the laser pulse length is much longer than the plasma wavelength, when the condition of the focusing is appropriately controlled.
Three-dimensional electron motion in a linearly polarized tightly focused laser field is numerically calculated. A high-intensity laser pulse focused on the free electrons in vacuum generates relativistic electron bunches whose length is shorter than the laser wavelength. The extremely short electron bunches with low-energy spread less than 1% are generated for a wide range of the laser parameters.
Objective: The purpose of this study was to determine the protective effect of edaravone, a free radical scavenger, on inner-ear barotrauma (IEB) in guinea pigs, based on a hypothesis implicating free radicals in the development of IEB.
Materials and methods: One hundred and twenty-five guinea pigs were divided into a control group and a pretreatment group. After auditory brainstem response (ABR) testing, the pretreatment group received 9.0 mg/kg intraperitoneal edaravone. Animals were exposed to pressure loading and then to further ABR testing.
Results: The incidence of IEB was 62.7 per cent in the control group and 42.9 per cent in the pretreatment group (p < 0.01). The distributions of threshold elevation in the control group were 37.3 per cent (for 10 dB or less), 21.3 per cent (for 20–30 dB), 18.0 per cent (for 40–60 dB) and 23.4 per cent (for 70 dB or more), and those in the pretreatment group were 57.1 per cent, 19.1 per cent, 14.3 per cent and 9.5 per cent, for the same respective decibel levels (p < 0.01).
Conclusions: These results suggest that protective treatment with edaravone can significantly reduce both the incidence of IEB and the severity of the resultant ABR threshold elevation.
We have demonstrated the acceleration of a monoenergetic electron beam by a laser-produced wakefield. Experiments were performed by focusing 2-TW laser pulses of 50 fs on supersonic gas-jet targets. The focused intensity was 5 × 1018 W/cm2 (a0 = 1.5). At an electron density of 1.5 × 1020 cm−3, the clear monoenergetic electron beam from the plasma was obtained at 7 to 15 MeV. The Stokes satellite peak in the forward scattering explained the energy spectra of electrons at various plasma densities well. Although the wakefield propagated 500 microns, which was far beyond the dephasing length, monoenergetic electron beams were obtained.
More than 4000 stars observed in both MOA and DENIS projects showing periodic or quasi-periodic light curves are studied. Almost all Mira stars are located on the classical period-luminosity relation, and the multiplicity of the period-luminosity relation is confirmed for small-amplitude stars. The colour-magnitude diagrams based on the MOA red band, Rm, and Ks constructed for the sequences, form a single strip with small successive shifts.
Electrochemical synthesis of hard Fe–15.4 mass% Ni–0.70 mass% C alloy film with a hardness 750 HV was carried out from sulfate-based bath containing a small amount of citric acid and L-ascorbic acid. The nature of the alloy was investigated by different characterization techniques including x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Mössbauer spectroscopy, differential scanning calorimetry, and magnetic measurements. The decomposition behavior of the alloy was also studied and compared with that of thermally prepared martensite. It was found that the electrochemically deposited Fe–Ni–C alloy exists in a state that is ahead of the freshly quenched state of martensite. It is suggested that the state of the electrochemically deposited Fe–15.4 mass% Ni–0.70 mass% C alloy corresponds to the state of thermal martensite, which had been heated to the preprecipitation stage of tempering.
The tick Boophilus microplus is a 1-host tick that causes important losses to bovine herds, and protective antigens are being investigated in order to develop vaccines that avoid the use of acaricides. Paramyosins are multi-functional invertebrate muscle proteins, whose roles may include host immunomodulation, and seem to be a prominent candidate in a schistosomiasis vaccine. We report here the cloning, expression and characterization of a B. microplus paramyosin (BmPRM). Sequence analysis of the full length coding sequence cDNA shows high identity to other arthropod paramyosin sequences, and the predicted molecular weight, pI and secondary structure are consistent with a typical paramyosin. Western-blot expression analysis indicates the presence of BmPRM in all tissues and developmental stages tested, but not in saliva. The recombinant protein (rBmPRM) was shown to bind both IgG and collagen. Possible implications of these activities with host evasion mechanisms are discussed.
On the basis of the Yohkoh data on the site and mechanism of magnetic energy transformation into thermal and kinetic energies of superhot plasmas and accelerated particles, a model is developed that explains observed properties of collisionless 3D reconnection in active regions. The model makes intelligible the observed relation between the S-like morphology and eruptive activity.
We studied 147 long-period red variable stars in the Large Magellanic Cloud from the MOA database. Amongst them, seven red luminous stars are likely pulsating in a higher mode.
Iron-carbon based hard, martensitic alloys are usually produced by conventional high temperature heat treatment. In the present work, the galvanostatic electrodeposition method has been employed to obtain hard Fe-0.96 mass % C and Fe-15.4 mass% Ni-0.70 mass% C alloys at around room temperature. The alloys have been investigated by SEM, XPS, XRD, and microhardness measurements, and their magnetic properties have been studied by vibrating sample magnetometer.
The as-deposited alloys were found to possess high mechanical hardness, 750-810 HV. Both alloys exhibit a smoother surface morphology as compared to a non-alloyed iron film obtained under similar electrochemical conditions. The coercive force of the as-deposited Fe-C and Fe-Ni-C alloys is 3930 and 494 A.m−1 respectively. In comparison, pure iron film deposited under similar conditions possesses a coercive force of 1592 A.m−1. The Fe-Ni-C alloy has a combination of high mechanical hardness and relatively soft magnetic properties, which may be of interest in potential applications requiring both soft magnetic properties and improved tribological performance. The effects of annealing on the behavior of the alloys are discussed.